【題目】在平面直角坐標(biāo)系中,直線
過點(diǎn)
且與直線
垂直,直線
與
軸交于點(diǎn)
,點(diǎn)
與點(diǎn)
關(guān)于
軸對(duì)稱,動(dòng)點(diǎn)
滿足
.
(Ⅰ)求動(dòng)點(diǎn)
的軌跡
的方程;
(Ⅱ)過點(diǎn)
的直線
與軌跡
相交于
兩點(diǎn),設(shè)點(diǎn)
,直線
的斜率分別為
,問
是否為定值?若是,求出該定值;若不是,請(qǐng)說明理由.
【答案】(1)
;(2)
.
【解析】
(Ⅰ)由已知設(shè)直線
的方程為
,
因?yàn)辄c(diǎn)
在直線
上,所以
,解得
.
所以直線
的方程為
.
令
,解得
,所以
,故
.
因?yàn)?/span>
,
由橢圓的定義可得,動(dòng)點(diǎn)
的軌跡
是以
為焦點(diǎn)的橢圓,長(zhǎng)軸長(zhǎng)為4.
所以
,
,
所以軌跡
的方程為
.
(Ⅱ)①當(dāng)直線
的斜率不存在時(shí),由
,解得
.
不妨設(shè)
,
,則
.
②當(dāng)直線
的斜率存在時(shí),設(shè)直線
的方程為
,
由
,消去
,得
,
依題意,直線
與軌跡
必相交于兩點(diǎn),設(shè)
,
,
則
,
,
又
,
,
所以![]()
![]()
![]()
.
綜上可得,
為定值
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面立角坐標(biāo)系
中,過點(diǎn)
的圓的圓心
在
軸上,且與過原點(diǎn)傾斜角為
的直線
相切.
(1)求圓
的標(biāo)準(zhǔn)方程;
(2)點(diǎn)
在直線
上,過點(diǎn)
作圓
的切線
、
,切點(diǎn)分別為
、
,求經(jīng)過
、
、
、
四點(diǎn)的圓所過的定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線方程
,
為焦點(diǎn),
為拋物線準(zhǔn)線上一點(diǎn),
為線段
與拋物線的交點(diǎn),定義:
.
(1)當(dāng)
時(shí),求
;
(2)證明:存在常數(shù)
,使得
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,在全校一年級(jí)學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:
喜歡甜品 | 不喜歡甜品 | 合計(jì) | |
南方學(xué)生 | 60 | 20 | 80 |
北方學(xué)生 | 10 | 10 | 20 |
合計(jì) | 70 | 30 | 100 |
根據(jù)表中數(shù)據(jù),問是否有
的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;
已知在被調(diào)查的北方學(xué)生中有5名數(shù)學(xué)系的學(xué)生,其中2名喜歡甜品,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至多有1人喜歡甜品的概率.
附:
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,點(diǎn)
,直線
,圓
.
(1)求
的取值范圍,并求出圓心坐標(biāo);
(2)有一動(dòng)圓
的半徑為
,圓心在
上,若動(dòng)圓
上存在點(diǎn)
,使
,求圓心
的橫坐標(biāo)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了紀(jì)念“一帶一路”倡議提出五周年,某城市舉辦了一場(chǎng)知識(shí)競(jìng)賽,為了了解市民對(duì)“一帶一路”知識(shí)的掌握情況,從回收的有效答卷中按青年組和老年組各隨機(jī)抽取了40份答卷,發(fā)現(xiàn)成績(jī)都在
內(nèi),現(xiàn)將成績(jī)按區(qū)間
,
,
,
,
進(jìn)行分組,繪制成如下的頻率分布直方圖.
![]()
青年組
![]()
中老年組
(1)利用直方圖估計(jì)青年組的中位數(shù)和老年組的平均數(shù);
(2)從青年組
,
的分?jǐn)?shù)段中,按分層抽樣的方法隨機(jī)抽取5份答卷,再從中選出3份答卷對(duì)應(yīng)的市民參加政府組織的座談會(huì),求選出的3位市民中有2位來自
分?jǐn)?shù)段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高考改革是教育體制改革中的重點(diǎn)領(lǐng)域和關(guān)鍵環(huán)節(jié),全社會(huì)極其關(guān)注.近年來,在新高考改革中,打破文理分科的“
”模式初露端倪.其中“
”指必考科目語文、數(shù)學(xué)、外語,“
”指考生根據(jù)本人興趣特長(zhǎng)和擬報(bào)考學(xué)校及專業(yè)的要求,從物理、化學(xué)、生物、歷史、政治、地理六科中選擇
門作為選考科目,其中語、數(shù)、外三門課各占
分,選考科目成績(jī)采用“賦分制”,即原始分?jǐn)?shù)不直接用,而是按照學(xué)生分?jǐn)?shù)在本科目考試的排名來劃分等級(jí)并以此打分得到最后得分.假定
省規(guī)定:選考科目按考生成績(jī)從高到低排列,按照占總體
的,以此賦分
分、
分、
分、
分.為了讓學(xué)生們體驗(yàn)“賦分制”計(jì)算成績(jī)的方法,
省某高中高一(
)班(共
人)舉行了以此摸底考試(選考科目全考,單科全班排名,每名學(xué)生選三科計(jì)算成績(jī)),已知這次摸底考試中的物理成績(jī)(滿分
分)頻率分布直方圖,化學(xué)成績(jī)(滿分
分)莖葉圖如下圖所示,小明同學(xué)在這次考試中物理
分,化學(xué)
多分.
![]()
(1)求小明物理成績(jī)的最后得分;
(2)若小明的化學(xué)成績(jī)最后得分為
分,求小明的原始成績(jī)的可能值;
(3)若小明必選物理,其他兩科在剩下的五科中任選,求小明此次考試選考科目包括化學(xué)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一列非零向量
滿足:
,
.
(1)寫出數(shù)列
的通項(xiàng)公式;
(2)求出向量
與
的夾角
,并將
中所有與
平行的向量取出來,按原來的順序排成一列,組成新的數(shù)列
,
,
為坐標(biāo)原點(diǎn),求點(diǎn)列
的坐標(biāo);
(3)令
(
),求
的極限點(diǎn)位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
如圖所示的空間幾何體,平面ACD⊥平面ABC,AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角為
.且點(diǎn)E在平面ABC上的射影落在
的平分線上.
![]()
(1)求證:DE//平面ABC;
(2)求二面角E—BC—A的余弦;
(3)求多面體ABCDE的體積.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com