【題目】已知橢圓
在左、右焦點分別為
,
,動點
在橢圓
上,
的周長為6,且面積的最大值為
.
(1)求
的方程;
(2)設直線
與
的另一個交點為
,過
,
分別作直線
的垂線,垂足為
,
,
與
軸的交點為
.若
,
,
的面積成等差數列,求直線
斜率的取值范圍.
科目:高中數學 來源: 題型:
【題目】如圖,在正方形ABCD的一邊CD內任取一點E,過E作對角線AC的平行線,交對角線BD于點G、交邊AD于點H、交邊BA的延長線于點F,聯結BH交DF于點M.求證:
![]()
(1)C、G、M三點共線;
(2)C、E、M、F四點共圓.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的離心率為
,且經過點
.
(1)求橢圓的標準方程;
(2)過點
的直線
交橢圓于
兩點,
是
軸上的點,若
是以
為斜邊的等腰直角三角形, 求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】最近的一次數學競賽共6道試題,每題答對得7分,答錯(或不答)得0分.賽后某參賽代表隊獲團體總分161分,且統計分數時發現:該隊任兩名選手至多答對兩道相同的題目.沒有三名選手都答對兩道相同的題目.試問該隊選手至少有多少人?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某縣共有90間農村淘寶服務站,隨機抽取5間,統計元旦期間的網購金額(單位:萬元)的莖葉圖如圖所示,其中莖為十位數,葉為個位數.若網購金額(單位:萬元)不小于18的服務站定義為優秀服務站,其余為非優秀服務站.從隨機抽取的5間服務站中再任取2間作網購商品的調查,則恰有1間是優秀服務站的概率為_____.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某次投籃測試中,有兩種投籃方案:方案甲:先在A點投籃一次,以后都在B點投籃;方案乙:始終在B點投籃.每次投籃之間相互獨立.某選手在A點命中的概率為
,命中一次記3分,沒有命中得0分;在B點命中的概率為
,命中一次記2分,沒有命中得0分,用隨機變量
表示該選手一次投籃測試的累計得分,如果
的值不低于3分,則認為其通過測試并停止投籃,否則繼續投籃,但一次測試最多投籃3次.
(1)若該選手選擇方案甲,求測試結束后所得分
的分布列和數學期望.
(2)試問該選手選擇哪種方案通過測試的可能性較大?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的離心率為
,以橢圓的2個焦點與1個短軸端點為頂點的三角形的面積為2
。
(1)求橢圓的方程;
(2)如圖,斜率為k的直線l過橢圓的右焦點F,且與橢圓交與A,B兩點,以線段AB為直徑的圓截直線x=1所得的弦的長度為
,求直線l的方程。
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,我國工業經濟發展迅速,工業增加值連年攀升,某研究機構統計了近十年(從2008年到2017年)的工業增加值(萬億元),如下表:
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
工業增加值 | 13.2 | 13.8 | 16.5 | 19.5 | 20.9 | 22.2 | 23.4 | 23.7 | 24.8 | 28 |
依據表格數據,得到下面的散點圖及一些統計量的值.
|
|
|
|
|
5.5 | 20.6 | 82.5 | 211.52 | 129.6 |
![]()
(1)根據散點圖和表中數據,此研究機構對工業增加值
(萬億元)與年份序號
的回歸方程類型進行了擬合實驗,研究人員甲采用函數
,其擬合指數
;研究人員乙采用函數
,其擬合指數
;研究人員丙采用線性函數
,請計算其擬合指數,并用數據說明哪位研究人員的函數類型擬合效果最好.(注:相關系數
與擬合指數
滿足關系
).
(2)根據(1)的判斷結果及統計值,建立
關于
的回歸方程(系數精確到0.01);
(3)預測到哪一年的工業增加值能突破30萬億元大關.
附:樣本
的相關系數
,
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年12月份,我國湖北武漢出現了新型冠狀病毒,人感染后會出現發熱、咳嗽、氣促和呼吸困難等,嚴重的可導致肺炎甚至危及生命.為了增強居民防護意識,增加居民防護知識,某居委會利用網絡舉辦社區線上預防新冠肺炎知識答題比賽,所有居民都參與了防護知識網上答卷,最終甲、乙兩人得分最高進入決賽,該社區設計了一個決賽方案:①甲、乙兩人各自從
個問題中隨機抽
個.已知這
個問題中,甲能正確回答其中的
個,而乙能正確回答每個問題的概率均為
,甲、乙兩人對每個問題的回答相互獨立、互不影響;②答對題目個數多的人獲勝,若兩人答對題目數相同,則由乙再從剩下的
道題中選一道作答,答對則判乙勝,答錯則判甲勝.
(1)求甲、乙兩人共答對
個問題的概率;
(2)試判斷甲、乙誰更有可能獲勝?并說明理由;
(3)求乙答對題目數的分布列和期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com