【題目】設數列{an}的前n項和為Sn . 若Sn=2an﹣n,則
+
+
+
= .
【答案】![]()
【解析】解:∵Sn=2an﹣n,∴n≥2時,an=Sn﹣Sn﹣1=2an﹣n﹣[2an﹣1﹣(n﹣1)],∴an=2an﹣1+1,化為:an+1=2(an﹣1+1),
n=1時,a1=2a1﹣1,解得a1=1.
∴數列{an+1}是等比數列,首項為2,公比為2.
∴an+1=2n,即an=2n﹣1,
∴
=
=
.
∴
+
+
+
=
+
+…+
=1﹣
=
.
故答案為:
.
Sn=2an﹣n,n≥2時,an=Sn﹣Sn﹣1,化為:an+1=2(an﹣1+1),n=1時,a1=2a1﹣1,解得a1.利用等比數列的通項公式可得an=2n﹣1,于是
=
=
.利用裂項求和方法即可得出.
科目:高中數學 來源: 題型:
【題目】下列幾個命題正確的個數是( )
①若方程
有一個正實根,一個負實根,則
;
②函數
是偶函數,但不是奇函數;
③設函數
的定義域為
,則函數
與函數
圖像關于
軸對稱;
④一條曲線
和直線
的公共點個數是
,則
的值不可能是1。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l:x+2y-2=0,試求:
(1)點P(-2,-1)關于直線l的對稱點坐標;
(2)直線
關于直線l對稱的直線l2的方程;
(3)直線l關于點(1,1)對稱的直線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線
﹣
=1(a>0,b>0)的左、右焦點分別為F1、F2 , 過右焦點F2且與x軸垂直的直線與雙曲線兩條漸近線分別交于A,B兩點,若△ABF1為等腰直角三角形,且|AB|=4
,P(x,y)在雙曲線上,M(
,
),則|PM|+|PF2|的最小值為( )
A.
﹣1
B.2
C.2
﹣2
D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=2017x+sin2017x,g(x)=log2017x+2017x , 則( )
A.對于任意正實數x恒有f(x)≥g(x)
B.存在實數x0 , 當x>x0時,恒有f(x)>g(x)
C.對于任意正實數x恒有f(x)≤g(x)
D.存在實數x0 , 當x>x0時,恒有f(x)<g(x)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個圓柱形圓木的底面半徑為1 m,長為10 m,將此圓木沿軸所在的平面剖成兩部分.現要把其中一部分加工成直四棱柱木梁,長度保持不變,底面為等腰梯形ABCD(如圖所示,其中O為圓心,C,D在半圓上),設
,木梁的體積為V(單位:m3),表面積為S(單位:m2).
![]()
(1)求V關于θ的函數表達式;
(2)求
的值,使體積V最大;
(3)問當木梁的體積V最大時,其表面積S是否也最大?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】端午節小長假期間,張洋與幾位同學從天津乘火車到大連去旅游,若當天從天津到大連的三列火車正點到達的概率分別為0.8,0.7,0.9,假設這三列火車之間是否正點到達互不影響,則這三列火車恰好有兩列正點到達的概率是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com