如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=
,且AB=2AD=2DC=2PD=4,E為PA的中點.![]()
(1)證明:DE∥平面PBC;
(2)證明:DE⊥平面PAB.
(1)參考解析;(2)參考解析.
解析試題分析:(1)直線與平面的平行有兩種方法證明第一是在平面內(nèi)找一條直線與該平面平行,就如本題的證明.E點是中點所以找到PB的中點即可.另外也可以通過平面與平面平行來證明.(2)直線與平面的垂直是要證明該直線與平面內(nèi)兩條相交直線垂直.DE垂直于PA較好證.另外一條又要通過直線AB垂直平面PAD來證明即可.這類題型主要思路是線線關(guān)系,線面關(guān)系,面面關(guān)系之間相互轉(zhuǎn)化.
試題解析:(1)設PB的中點為F,連結(jié)EF、CF,EF∥AB,DC∥AB,所以EF∥DC,且EF=DC=
.
故四邊形CDEF為平行四邊形,可得ED∥CF.
又ED
平面PBC,CF
平面PBC,
故DE∥平面PBC.
(2)因為PD⊥底面ABCD,AB
平面ABCD,所以AB⊥PD.
又因為AB⊥AD,PD
AD=D,AD
平面PAD,PD
平面PAD,所以AB⊥平面PAD.
ED
平面PAD,故ED⊥AB.又PD=AD,E為PA的中點,故ED⊥PA;
PA
AB=A,PA
平面PAB,AB
平面PAB,所以ED⊥平面PAB.
考點:1.線面平行.2.線面垂直.![]()
科目:高中數(shù)學 來源: 題型:解答題
已知:如圖,等腰直角三角形
的直角邊
,沿其中位線
將平面
折起,使平面
⊥平面
,得到四棱錐
,設
、
、
、
的中點分別為
、
、
、
.![]()
![]()
![]()
(1)求證:
、
、
、
四點共面;
(2)求證:平面
平面
;
(3)求異面直線
與
所成的角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知四棱錐P-ABCD的底面為菱形,且∠ABC =60°,AB=PC=2,AP=BP=
.![]()
(Ⅰ)求證:平面PAB⊥平面ABCD ;
(Ⅱ)求二面角A-PC-D的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖四棱錐
中,底面
是平行四邊形,
平面
,垂足為
,
在
上且
,
,
,
是
的中點,四面體
的體積為
.![]()
(1)求過點P,C,B,G四點的球的表面積;
(2)求直線
到平面
所成角的正弦值;
(3)在棱
上是否存在一點
,使![]()
![]()
,若存在,確定點
的位置,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在長方體
中,
為線段
中點.![]()
(1)求直線
與直線
所成的角的余弦值;
(2)若
,求二面角
的大小;
(3)在棱
上是否存在一點
,使得
平面
?若存在,求
的長;若不存在,說明理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com