【題目】一張矩形紙片ABCD,AD=5cm,AB=3cm,將紙片沿ED折疊,A點剛好落在BC邊上的A'處,如圖,這時AE的長應該是( ) ![]()
A.
cm
B.
cm
C.
cm
D.
cm
【答案】A
【解析】解:∵四邊形ABCD是矩形, ∴AB=CD=3cm,AD=BC=5cm,
∵將紙片沿ED折疊,A點剛好落在BC邊上的A'處,
∴A′D=AD=5cm,A′E=AE,
在Rt△A′CD中,根據勾股定理得,A′C=
=
=4cm,
所以,A′B=BC﹣A′C=5﹣4=1cm,
設AE=x,則BE=AB﹣AE=3﹣x,
在Rt△A′EB中,根據勾股定理得,A′B2+BE2=A′E2 ,
即12+(3﹣x)2=x2 ,
解得x=
,
即AE=
cm.
故選A.
【考點精析】本題主要考查了翻折變換(折疊問題)的相關知識點,需要掌握折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】已知拋物線 ![]()
![]()
(1)此拋物線的頂點坐標是 ,與x軸的交點坐標是 , ,與y軸交點坐標是 ,對稱軸直線是 ;
(2)在平面直角坐標系中畫出
的圖象;
(3)結合圖象,說明當x取何值時,y隨x的增大而減小.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點O為平面直角坐標系的原點,點A在x軸上,△OAB是邊長為2的等邊三角形,以O為旋轉中心,將△OAB按順時針方向旋轉60°,得到△OA′B′,那么點A′的坐標為( )![]()
A.(1,
)
B.(﹣1,2)
C.(﹣1,
)
D.(﹣1,
)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣3經過A(﹣1,0)B(4,0)兩點,與y軸交于點C![]()
(1)求拋物線解析式;
(2)點N是x軸下方拋物線上的一點,連接AN,若tan∠BAN=2,求點N的縱坐標;
(3)點D是點C關于拋物線對稱軸的對稱點,連接AD,在x軸上是否存在E,使∠AED=∠CAD?如果存在,請直接寫出點E坐標,如果不存在,請說明理由;
(4)連接AC、BC,△ABC的中線BM交y軸于點H,過點A作AG⊥BC,垂足為G,點F是線段BH上的一個動點(不與B、H重合),點F沿線段BH從點B向H移動,移動后的點記作點F′,連接F′C、F′A,△F′AC的F′C、F′A兩邊上的高交于點P,連接AP,CP,△F′AC與△PAC的面積分別記為S1 , S2 , S1和S2的乘積記為m,在點F的移動過程中,探究m的值變化情況,若變化,請直接寫出m的變化范圍,若不變,直接寫出這個m值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖(1),PAB為⊙O的割線,直線PC與⊙O有公共點C,且PC2=PA×PB,![]()
(1)求證:∠PCA=∠PBC;直線PC是⊙O的切線;
(2)如圖(2),作弦CD,使CD⊥AB,連接AD、BC,若AD=2,BC=6,求⊙O的半徑;![]()
(3)如圖(3),若⊙O的半徑為
,PO=
,MO=2,∠POM=90°,⊙O上是否存在一點Q,使得PQ+
QM有最小值?若存在,請求出這個最小值;若不存在,說明理由.![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中有一菱形OABC且∠A=120°,點O、B在y軸上,OA=1,現在把菱形向右無滑動翻轉,每次翻轉60°,點B的落點依次為B1、B2、B3…,連續翻轉2017次,則B2017的坐標為 . ![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=2∠DAE=2α.
(1)如圖1,若點D關于直線AE的對稱點為F,求證:△ADF∽△ABC;![]()
(2)如圖2,![]()
在(1)的條件下,若α=45°,求證:DE2=BD2+CE2;
(3)如圖3,![]()
若α=45°,點E在BC的延長線上,則等式DE2=BD2+CE2還能成立嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是根據某市2010年至2014年工業生產總值繪制的折線統計圖,觀察統計圖獲得以下信息,其中信息判斷錯誤的是( ) ![]()
A.2010年至2014年間工業生產總值逐年增加
B.2014年的工業生產總值比前一年增加了40億元
C.2012年與2013年每一年與前一年比,其增長額相同
D.從2011年至2014年,每一年與前一年比,2014年的增長率最大
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com