【題目】魏晉時期的數學家劉徽首創割圓術.為計算圓周率建立了嚴密的理論和完善的算法.作圓內接正多邊形,當正多邊形的邊數不斷增加時,其周長就無限接近圓的周長,進而可用
來求得較為精確的圓周率.祖沖之在劉徽的基礎上繼續努力,當正多邊形的邊數增加24576時,得到了精確到小數點后七位的圓周率,這一成就在當時是領先其他國家一千多年,如圖,依據“割圓術”,由圓內接正六邊形算得的圓周率的近似值是( 。
![]()
A. 0.5 B. 1 C. 3 D. π
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=﹣x+7的圖象與正比例函數y=
x的圖象交于點A,點P(t,0)是x正半軸上的一個動點.
(1)點A的坐標為( , );
(2)如圖1,連接PA,若△AOP是等腰三角形,求點P的坐標:
(3)如圖2,過點P作x軸的垂線,分別交y=
x和y=﹣x+7的圖象于點B,C.是否存在正實數,使得BC=
OA,若存在求出t的值;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】英國曼徹斯特大學的兩位科學家因為成功地從石墨中分離出石墨烯,榮獲了諾貝爾物理學獎.石墨烯目前是世上最薄卻也是最堅硬的納米材料,同時還是導電性最好的材料,其理論厚度僅0.000 000 000 34米,將這個數用科學記數法表示為
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某汽車銷售公司經銷某品牌A款汽車,隨著汽車的普及,其價格也在不斷下降.今年5月份A款汽車的售價比去年同期每輛降價2萬元.如果賣出相同數量的A款汽車,去年銷售額為100萬元,今年銷售額只有90萬元.
(1)今年5月份A款汽車每輛銷售多少萬元?
(2)為了增加收入,汽車銷售公司決定再經銷同品牌的B款汽車,已知A款汽車每輛進價為8.5萬元,B款汽車每輛進價為6萬元,公司預計用多于100萬元且少于110萬元的資金購進這兩款汽車共15輛,問有幾種進貨方案?
(3)在(2)的前提下,如果B款汽車每輛售價為12萬元,為打開B款汽車的銷路,公司決定每售出一輛B款汽車,獎勵顧客現金1.8萬元,怎樣進貨公司的利潤最大(假設能全部賣出)?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】太極揉推器是一種常見的健身器材.基本結構包括支架和轉盤,數學興趣小組的同學對某太極揉推器的部分數據進行了測量:如圖,立柱AB的長為125cm,支架CD、CE的長分別為60cm、40cm,支點C到立柱頂點B的距離為25cm.支架CD,CE與立柱AB的夾角∠BCD=∠BCE=45°,轉盤的直徑FG=MN=60cm,D,E分別是FG,MN的中點,且CD⊥FG,CE⊥MN,則兩個轉盤的最低點F,N距離地面的高度差為_____cm.(結果保留根號)
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合與探究:
如圖1,拋物線y=﹣
x2+
x+
與x軸分別交于A、B兩點(點A在點B的左側),與y軸交于C點.經過點A的直線l與y軸交于點D(0,﹣
).
(1)求A、B兩點的坐標及直線l的表達式;
(2)如圖2,直線l從圖中的位置出發,以每秒1個單位的速度沿x軸的正方向運動,運動中直線l與x軸交于點E,與y軸交于點F,點A 關于直線l的對稱點為A′,連接FA′、BA′,設直線l的運動時間為t(t>0)秒.探究下列問題:
①請直接寫出A′的坐標(用含字母t的式子表示);
②當點A′落在拋物線上時,求直線l的運動時間t的值,判斷此時四邊形A′BEF的形狀,并說明理由;
(3)在(2)的條件下,探究:在直線l的運動過程中,坐標平面內是否存在點P,使得以P,A′,B,E為頂點的四邊形為矩形?若存在,請直接寫出點P的坐標; 若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:關于x的二次函數
的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.
(1)求二次函數的表達式;
(2)在y軸上是否存在一點P,使△PBC為等腰三角形.若存在,請求出點P的坐標;
(3)有一個點M從點A出發,以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發,以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到 達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知菱形ABCD的對角線相交于點O,延長AB至點E,使BE=AB,連接CE.
![]()
(1)求證:BD=EC;
(2)若∠E=50°,求∠BAO的大小.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com