【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯坎底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1:
,則大樓AB的高度為________米.
![]()
【答案】6
+29.
【解析】
延長AB交DC于H,作EG⊥AB于G,則GH=DE=15米,EG=DH,設BH=x米,則CH=
x米.在Rt△BCH中,BC=12米,由勾股定理得出方程,解方程求出BH=6米,CH=6
米,得出BG、EG的長度,證明△AEG是等腰直角三角形,得出AG=EG=6
+20(米),即可得出大樓AB的高度.
延長AB交DC于H,作EG⊥AB于G,如圖所示,則GH=DE=15米,EG=DH.
∵梯坎坡度i=1:
,∴BH:CH=1:
,設BH=x米,則CH=
x米.
在Rt△BCH中,BC=12米,由勾股定理得:x2+(
x)2=122,解得:x=6,∴BH=6米,CH=6
米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=6
+20(米).
∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=6
+20(米),∴AB=AG+BG=6
+20+9=(6
+29)米.
故答案為:6
+29.
科目:初中數學 來源: 題型:
【題目】如圖△ABC中,∠BAC=90°,AB=AC=AD,AD交BC于點P,∠CAD=30°,AC=6,求:
![]()
(1)∠BDC的度數,
(2)△ABD的周長
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,直線l:y=
x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=
x2+bx+c經過點B,與直線l的另一個交點為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點D在拋物線上,DE∥y軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0<t<4),矩形DFEG的周長為p,求p與t的函數關系式以及p的最大值;
(3)將△AOB繞平面內某點M旋轉90°或180°,得到△A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若△A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數和旋轉180°時點A1的橫坐標.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,(1)寫出△ABC的各頂點坐標;
(2)畫出△ABC關于y軸的對稱圖形△A1B1C1;
(3)寫出△ABC關于x軸對稱的三角形的各頂點坐標.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校為了增強學生體質,決定開設以下體育課外活動項目:A:籃球 B:乒乓球C:羽毛球 D:足球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統計圖,請回答下列問題:
![]()
![]()
(1)這次被調查的學生共有 人;
(2)請你將條形統計圖(2)補充完整;
(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現優秀,現決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在下列帶有坐標系的網格中,△ABC的頂點都在邊長為1的小正方形的頂點上
(1) 直接寫出坐標:A__________,B__________
(2) 畫出△ABC關于y軸的對稱的△DEC(點D與點A對應)
(3) 用無刻度的直尺,運用全等的知識作出△ABC的高線BF(保留作圖痕跡)
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示.
(1)寫出三角形③的頂點坐標.
(2)通過平移由三角形③能得到三角形④嗎?
(3)根據對稱性由三角形③可得三角形①,②,它們的頂點坐標各是什么?
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC和△DEC中,已知AB=DE,還需添加兩個條件才能使△ABC≌△DEC,不能添加的一組條件是
![]()
A.BC=EC,∠B=∠EB.BC=EC,AC=DC
C.BC=DC,∠A=∠DD.∠B=∠E,∠A=∠D
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com