【題目】(問題情境)
課外興趣小組活動時,老師提出了如下問題:如圖1,△ABC中,若AB=12,AC=8,求BC邊上的中線AD的取值范圍.
小明在組內經過合作交流,得到了如下的解決方法:延長AD到E,使DE=AD,連接BE.請根據小明的方法思考:
![]()
(1)由已知和作圖能得到△ADC≌△EDB,依據是 .
A.SSS B.SAS C.AAS D.HL
(2)由“三角形的三邊關系”可求得AD的取值范圍是 .
解后反思:題目中出現“中點”“中線”等條件,可考慮延長中線構造全等三角形,把分散的已知條件和所求證的結論集合到同一個三角形中.
(初步運用)
如圖2,AD是△ABC的中線,BE交AC于E,交AD于F,且AE=EF.若EF=3,EC=2,求線段BF的長.
(靈活運用)
如圖3,在△ABC中,∠A=90°,D為BC中點,DE⊥DF,DE交AB于點E,DF交AC于點F,連接EF,試猜想線段BE、CF、EF三者之間的等量關系,并證明你的結論.
【答案】(1)B;(2)2<AD<10;【初步運用】BF=5;【靈活運用】BE2+CF2=EF2,理由見解析
【解析】
(1)根據全等三角形的判定定理解答;
(2)根據三角形的三邊關系計算;
初步運用 延長AD到M,使AD=DM,連接BM,證明△ADC≌△MDB,根據全等三角形的性質解答;
靈活運用 延長ED到點G,使DG=ED,連結GF,GC,證明△DBE≌△DCG,得到BE=CG,根據勾股定理解答.
解:(1)在△ADC和△EDB中,
,
∴△ADC≌△EDB(SAS),
故選:B;
(2)∵△ADC≌△EDB,
∴EB=AC=8,
在△ABE中,
AB﹣BE<AE<AB+BE,
∴2<AD<10,
故答案為:2<AD<10;
【初步運用】
延長AD到M,使AD=DM,連接BM,
∵AE=EF.EF=3,
∴AC=5,
∵AD是△ABC中線,
∴CD=BD,
∵在△ADC和△MDB中,
,
∴△ADC≌△MDB,
∴BM=AC,∠CAD=∠M,
∵AE=EF,
∴∠CAD=∠AFE,
∵∠AFE=∠BFD,
∴∠BFD=∠CAD=∠M,
∴BF=BM=AC,
即BF=5;
【靈活運用】
線段BE、CF、EF之間的等量關系為:BE2+CF2=EF2.
證明:如圖3,延長ED到點G,使DG=ED,連結GF,GC,
∵ED⊥DF,
∴EF=GF,
∵D是BC的中點,
∴BD=CD,
在△BDE和△CDG中,
,
∴△BDE≌△CDG(SAS),
∴BE=CG,
∵∠A=90°,
∴∠B+∠ACB=90°,
∵△BDE≌△CDG,EF=GF,
∴BE=CG,∠B=∠GCD,
∴∠GCD+∠ACB=90°,即∠GCF=90°,
∴Rt△CFG中,CF2+GC2=GF2,
∴BE2+CF2=EF2.
![]()
![]()
科目:初中數學 來源: 題型:
【題目】古希臘著名的畢達哥拉斯學派把1,3,6,10…這樣的數稱為“三角形數”,而把1,4,9,16…這樣的數稱為“正方形數”.從圖中可以發現,任何一個大于1的“正方形數”都可以看作兩個相鄰“三角形數”之和.下列等式中,符合這一規律的是( )
![]()
A.13=3+10B.25=9+16C.36=15+21D.49=18+31
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場為了吸引顧客,設計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有“0元”、“10元”、“20元”和“30元”的字樣.規定:顧客在本商場同一日內,每消費滿200元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回),商場根據兩小球所標金額的和返還相應價格的購物券,可以重新在本商場消費,某顧客剛好消費200元.
(1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;
(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,
,點
,
分別在直線
,
上,
,過點
作
的延長線交于點
,交
于點
,
平分
,交
于點
,交
于點
.
(1)直接寫出
,
,
之間的關系:
___________=____________+___________
(2)若
,求
.
(3)如圖2,在(2)的條件下,將
繞著點
以每秒
的速度逆時針旋轉,旋轉時間為
,當
邊與射線
重合時停止,則在旋轉過程中,當
的其中一邊與
的某一邊平行時,直接寫出此時
的值.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的圖象經過點A(﹣2,0),點B(4,0),點D(2,4),與y軸交于點C,作直線BC,連接AC、CD.
(1)求拋物線的函數表達式;
(2)E是拋物線上的點,求滿足∠ECD=∠ACO的點E的坐標.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為準備母親節禮物,同學們委托小明用其支付寶余額團購鮮花或禮盒.每束鮮花的售價相同,每份禮盒的售價也相同.若團購15束鮮花和18份禮盒,余額差80元;若團購18束鮮花和15份禮盒,余額剩70元.若團購19束鮮花和14份禮盒,則支付寶余額剩_______元.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,反比例函數y=
的圖象與一次函數y=kx+b的圖象交于點A(m,2),點B(﹣2,n ),一次函數圖象與y軸的交點為C.
(1)求一次函數解析式;
(2)求C點的坐標;
(3)求△AOB的面積.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線l經過點A,BD⊥直線l,CE⊥直線l,垂足分別為點D、E.證明:DE=BD+CE.
(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線l上,且∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結論DE=BD+CE是否成立?如成立;請你給出證明;若不成立,請說明理由.
(3)拓展與應用:如圖(3),D、E是直線l上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,求證:DF=EF.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com