【題目】在□ABCD中,若∠A+∠C=120°,則∠A=________,∠B=__________.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在△ABC中,AE是角平分線,D是AB上的點(diǎn),AE、CD相交于點(diǎn)F.
(1)若∠ACB=∠CDB=90°,求證:∠CFE=∠CEF;
(2)若∠ACB=∠CDB=m(0°<m<180°). ①求∠CEF﹣∠CFE的值(用含m的代數(shù)式表示);
②是否存在m,使∠CEF小于∠CFE,如果存在,求出m的范圍,如果不存在,請說明理由.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD中,AB=6,第一次平移長方形ABCD沿AB的方向向右平移5個單位,得到長方形A1B1C1D1 , 第2次平移將長方形A1B1C1D1沿A1B1的方向向右平移5個單位,得到長方形A2B2C2D2…,第n次平移將長方形An﹣1Bn﹣1Cn﹣1Dn﹣1沿An﹣1Bn﹣1的方向平移5個單位,得到長方形AnBnCnDn(n>2),若ABn的長度為56,則n= ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有兩個角都相等的多邊形,它們的邊數(shù)之比為1:2,且第二個多邊形的內(nèi)角比第一個多邊形的內(nèi)角大15°,求這兩個多邊形的邊數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)某班“數(shù)學(xué)興趣小組”對函數(shù)
的圖像和性質(zhì)進(jìn)行了探究,探究過程如下,請補(bǔ)充完整.
(1)自變量
的取值范圍是全體實數(shù),
與
的幾組對應(yīng)值列表如下:
| … |
|
|
|
| 0 | 1 | 2 | 3 | 4 | … |
| … | 3 |
|
|
| 0 |
| 0 |
| 3 | … |
其中,
=____________.
(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫出了函數(shù)圖像的一部分,請畫出該圖像的另一部分.
(3)觀察函數(shù)圖像,寫出兩條函數(shù)的性質(zhì):
![]()
(4)進(jìn)一步探究函數(shù)圖像發(fā)現(xiàn):
①函數(shù)圖像與
軸有__________個交點(diǎn),所以對應(yīng)方程
有___________個實數(shù)根;
②方程
有___________個實數(shù)根;
③關(guān)于
的方程
有4個實數(shù)根,
的取值范圍是_______________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次方程x2﹣4x+k=0有兩個不相等的實數(shù)根
(1)求k的取值范圍;
(2)如果k是符合條件的最大整數(shù),且一元二次方程x2﹣4x+k=0與x2+mx﹣1=0有一個相同的根,求此時m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)
(x>0)的圖象交于A(2,﹣1),B(
,n)兩點(diǎn),直線y=2與y軸交于點(diǎn)C.
![]()
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com