數學英語物理化學 生物地理
數學英語已回答習題未回答習題題目匯總試卷匯總練習冊解析答案
雙曲線-=1的離心率為 .
解析
科目:高中數學 來源: 題型:填空題
已知雙曲線中心在原點,一個焦點為,點P在雙曲線上,且線段的中點坐標為(,),則此雙曲線的離心率是 .
橢圓的左,右焦點分別為,焦距為,若直線與橢圓的一個交點滿足,則該橢圓的離心率為 .
已知橢圓+=1的兩個焦點是F1、F2,點P在該橢圓上,若|PF1|-|PF2|=2,則△PF1F2的面積是 .
已知F為雙曲線C:-=1的左焦點,P,Q為C上的點.若PQ的長等于虛軸長的2倍,點A(5,0)在線段PQ上,則△PQF的周長為 .
設P為直線y=x與雙曲線-=1(a>0,b>0)左支的交點,F1是左焦點,PF1垂直于x軸,則雙曲線的離心率e= .
已知雙曲線-=1的一個焦點與圓x2+y2-10x=0的圓心重合,且雙曲線的離心率等于,則該雙曲線的標準方程為 .
已知過拋物線y2=4x的焦點F的直線交該拋物線于A、B兩點,|AF|=2,則|BF|= .
過拋物線y2=2px(p>0)的焦點F的直線l與拋物線在第一象限的交點為A,直線與拋物線的準線的交點為B,點A在拋物線的準線上的射影為C,若=,·=36,則拋物線的方程為________.
國際學校優選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區