【題目】對于無窮數列
,
,記
,
,若同時滿足條件①
,
均單調遞增;②
且
,則稱
,
是無窮互補數列.
(1)若
,
,試判斷數列
,
是否為無窮互補數列,并說明理由;
(2)若
,且
,
是無窮互補數列,求數列
前
項的和.
科目:高中數學 來源: 題型:
【題目】為了讓居民了解垃圾分類,養成垃圾分類的習慣,讓綠色環保理念深入人心.某市將垃圾分為四類:可回收物,餐廚垃圾,有害垃圾和其他垃圾.某班按此四類由10位同學組成四個宣傳小組,其中可回收物與餐廚垃圾宣傳小組各有2位同學,有害垃圾與其他垃圾宣傳小組各有3位同學.現從這10位同學中選派5人到某小區進行宣傳活動,則每個宣傳小組至少選派1人的概率為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》中“勾股容方”問題:“今有勾五步,股十二步,問勾中容方幾何?”魏晉時期數學家劉徽在其《九章算術注》中利用出入相補原理給出了這個問題的一般解法:如圖1,用對角線將長和寬分別為
和
的矩形分成兩個直角三角形,每個直角三角形再分成一個內接正方形(黃)和兩個小直角三角形(朱、青).將三種顏色的圖形進行重組,得到如圖2所示的矩形.該矩形長為
,寬為內接正方形的邊長
.由劉徽構造的圖形還可以得到許多重要的結論,如圖3.設
為斜邊
的中點,作直角三角形
的內接正方形對角線
,過點
作
于點
,則下列推理正確的是( )
![]()
①由圖1和圖2面積相等得
;
②由
可得
;
③由
可得
;
④由
可得
.
A.①②③④B.①②④C.②③④D.①③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于數列
,若存在常數M,使得對任意
,
與
中至少有一個不小于M,則記作
,那么下列命題正確的是( ).
A.若
,則數列
各項均大于或等于M;
B.若
,則
;
C.若
,
,則
;
D.若
,則
;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐
中,底面
是正方形,頂點
在底面的射影是底面的中心,且各頂點都在同一球面上,若該四棱錐的側棱長為
,體積為4,且四棱錐的高為整數,則此球的半徑等于( )(參考公式:
)
A. 2B.
C. 4D. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點P(x,y)是平面內的動點,定點F(1,0),定直線l:x=﹣1與x軸交于點E,過點P作PQ⊥l于點Q,且滿足
![]()
![]()
.
(1)求動點P的軌跡t的方程;
(2)過點F作兩條互相垂直的直線,分別交曲線t于點A,B,和點C,D.設線段AB和線段CD的中點分別為M和N,記線段MN的中點為K,點O為坐標原點,求直線OK的斜率k的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com