【題目】關(guān)于x的不等式ax2+bx+2>0的解集為{x|-1<x<2},則關(guān)于x的不等式bx2-ax-2>0的解集為( )
A. {x|-2<x<1} B. {x|x>1或x<-2}
C. {x|x>2或x<-1} D. {x|x<-1或x>1}
【答案】B
【解析】
利用不等式的解集與方程根的關(guān)系,求出a,b的值,即可求得不等式bx2﹣ax﹣2>0的解集.
∵關(guān)于x的不等式ax2+bx+2>0的解集為(﹣1,2),
∴﹣1,2是ax2+bx+2=0(a<0)的兩根
∴![]()
∴a=﹣1,b=1
∴不等式bx2﹣ax﹣2>0為x2+x﹣2>0,
∴x<﹣2或x>1
故選:B.
【點(diǎn)睛】
(1)二次函數(shù)圖象與x軸交點(diǎn)的橫坐標(biāo)、二次不等式解集的端點(diǎn)值、一元二次方程的解是同一個(gè)量的不同表現(xiàn)形式。
(2)二次函數(shù)、二次方程與二次不等式統(tǒng)稱“三個(gè)二次”,它們常結(jié)合在一起,而二次函數(shù)又是“三個(gè)二次”的核心,通過二次函數(shù)的圖象貫穿為一體.有關(guān)二次函數(shù)的問題,利用數(shù)形結(jié)合的方法求解,密切聯(lián)系圖象是探求解題思路的有效方法.
【題型】單選題
【結(jié)束】
6
【題目】已知a,b,c分別是△ABC的內(nèi)角A,B,C的對(duì)邊,若△ABC的周長為2(
+1),且sin B+sin C=
sin A,則a= ( )
A.
B. 2 C. 4 D. ![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
:
,(
為坐標(biāo)原點(diǎn)),直線
:
.拋物線
:
.
(Ⅰ)過直線
上任意一點(diǎn)
作圓
的兩條切線,切點(diǎn)為
.求四邊形
的面積最小值;
(Ⅱ)若圓
過點(diǎn)
,且圓心
在拋物線
上,
是圓
在
軸上截得的弦,試探究
運(yùn)動(dòng)時(shí),弦長
是否為定值?并說明理由;
(Ⅲ) 過點(diǎn)
的直線
分別與圓
交于點(diǎn)
兩點(diǎn),若
,問直線
是否過定點(diǎn)?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A、B為拋物線C:
上兩點(diǎn),A與B的中點(diǎn)的橫坐標(biāo)為2,直線AB的斜率為1.
(Ⅰ)求拋物線C的方程;
(Ⅱ)直線
交x軸于點(diǎn)M,交拋物線C:
于點(diǎn)P,M關(guān)于點(diǎn)P的對(duì)稱點(diǎn)為N,連結(jié)ON并延長交C于點(diǎn)H.除H以外,直線MH與C是否有其他公共點(diǎn)?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,內(nèi)角A、B、C的對(duì)邊分別是a、b、c,且2cos2
+sin2A=1.
(Ⅰ)求A;
(Ⅱ)設(shè)a=2
-2,△ABC的面積為2,求b+c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l經(jīng)過拋物線x2=4y的焦點(diǎn),且與拋物線交于A,B兩點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn).
(1)求拋物線準(zhǔn)線方程;
(2)若△AOB的面積為4,求直線l的方程.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要得到函數(shù)y=sin
x的圖象,只要將函數(shù)y=cos2x的圖象( )
A.向右平移
個(gè)單位長度,再將各點(diǎn)的橫坐標(biāo)伸長為原來的4倍,縱坐標(biāo)不變
B.向左平移
個(gè)單位長度,再將各點(diǎn)的橫坐標(biāo)縮短為原來的
倍,縱坐標(biāo)不變
C.向左平移
個(gè)單位長度,再將各點(diǎn)的橫坐標(biāo)伸長為原來的4倍,縱坐標(biāo)不變
D.向右平移
個(gè)單位長度,再將各點(diǎn)的橫坐標(biāo)縮短到原來的
, 縱坐標(biāo)不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=ax2+bx-
ln x的導(dǎo)函數(shù)
的零點(diǎn)分別為1和2.
(I) 求a , b的值;
(Ⅱ)若當(dāng)
時(shí),
恒成立, 求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com