【題目】如圖所示的多面體,它的正視圖為直角三角形,側(cè)視圖為正三角形,俯視圖為正方形(尺寸如圖所示),E為VB的中點(diǎn). ![]()
(1)求證:VD∥平面EAC;
(2)求二面角A﹣VB﹣D的余弦值.
【答案】
(1)證明:由正視圖可知:平面VAB⊥平面ABCD
連接BD交AC于O點(diǎn),連接EO,
![]()
由已知得BO=OD,VE=EB
∴VD∥EO
又VD平面EAC,EO平面EAC
∴VD∥平面EAC;
(2)證明:設(shè)AB的中點(diǎn)為P,則VP⊥平面ABCD,建立如圖所示的坐標(biāo)系,
![]()
則
=(0,1,0)
設(shè)平面VBD的法向量為 ![]()
∵ ![]()
∴由
,可得
,∴可取
=(
,
,1)
∴二面角A﹣VB﹣D的余弦值cosθ=
= ![]()
【解析】(1)欲證VD∥平面EAC,根據(jù)直線(xiàn)與平面平行的判定定理可知只需證VD與平面EAC內(nèi)一直線(xiàn)平行即可,而連接BD交AC于O點(diǎn),連接EO,由已知易得VD∥EO,VD平面EAC,EO平面EAC,滿(mǎn)足定理?xiàng)l件;(2)設(shè)AB的中點(diǎn)為P,則VP⊥平面ABCD,建立坐標(biāo)系,利用向量的夾角公式,可求二面角A﹣VB﹣D的余弦值.
【考點(diǎn)精析】關(guān)于本題考查的直線(xiàn)與平面平行的判定,需要了解平面外一條直線(xiàn)與此平面內(nèi)的一條直線(xiàn)平行,則該直線(xiàn)與此平面平行;簡(jiǎn)記為:線(xiàn)線(xiàn)平行,則線(xiàn)面平行才能得出正確答案.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
)的部分圖象如圖所示,則關(guān)于f(x)的說(shuō)法正確的是( ) ![]()
A.對(duì)稱(chēng)軸方程是x=
+2kπ(k∈Z)
B.φ=﹣ ![]()
C.最小正周期為π
D.在區(qū)間(
,
)上單調(diào)遞減
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=3x , g(x)=|x+a|﹣3,其中a∈R. (Ⅰ)若函數(shù)h(x)=f[g(x)]的圖象關(guān)于直線(xiàn)x=2對(duì)稱(chēng),求a的值;
(Ⅱ)給出函數(shù)y=g[f(x)]的零點(diǎn)個(gè)數(shù),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列判斷錯(cuò)誤的是( )
A.命題“若xy=0,則x=0”的否命題為“若xy≠0,則x≠0”
B.命題“?x∈R,x2﹣x﹣1≤0”的否定是“
”
C.若p,q均為假命題,則p∧q為假命題
D.命題“?x∈[1,2],x2﹣a≤0”為真命題的一個(gè)充分不必要條件是a≥4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,
=
,且a+c=2.
(1)求角B;
(2)求邊長(zhǎng)b的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=Asin(ωx+φ)在一個(gè)周期內(nèi)的圖象如圖,此函數(shù)的解析式為( ) ![]()
A.y=2sin(2x+
)
B.y=2sin(2x+
)
C.y=2sin(
﹣
)
D.y=2sin(2x﹣
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=
cos4x+2sinxcosx﹣
sin4x.
(1)當(dāng)x∈[0,
]時(shí),求f(x)的最大值、最小值以及取得最值時(shí)的x值;
(2)設(shè)g(x)=3﹣2m+mcos(2x﹣
)(m>0),若對(duì)于任意x1∈[0,
],都存在x2∈[0,
],使得f(x1)=g(x2)成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若實(shí)數(shù)x,y滿(mǎn)足x2+y2﹣2x+2
y+3=0,則x﹣
y的取值范圍是( )
A.[2,+∞)
B.(2,6)
C.[2,6]
D.[﹣4,0]
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com