【題目】已知下列四個命題:
①等差數(shù)列一定是單調(diào)數(shù)列;
②等差數(shù)列的前
項和構(gòu)成的數(shù)列一定不是單調(diào)數(shù)列;
③已知等比數(shù)列
的公比為
,若
,則數(shù)列
是單調(diào)遞增數(shù)列.
④記等差數(shù)列的前
項和為
,若
,
,則數(shù)列
的最大值一定在
處達到.
其中正確的命題有_____.(填寫所有正確的命題的序號)
【答案】④
【解析】
①舉反例,d=0時為常數(shù)列,即可判斷出結(jié)論;②舉反例:Sn=n2﹣2n,為單調(diào)遞增數(shù)列;③舉反例:例如﹣1,﹣2,﹣4,……,為單調(diào)遞減數(shù)列.④記等差數(shù)列的前n項和為Sn,由S2k=k(ak+ak+1)>0,S2k+1=(2k+1)ak+1<0,可得:ak>0,ak+1<0,即可判斷出正誤.
①等差數(shù)列不一定是單調(diào)數(shù)列,例如
時為常數(shù)列;
②等差數(shù)列的前
項和構(gòu)成的數(shù)列一定不是單調(diào)數(shù)列,不正確,反例:
,為單調(diào)遞增數(shù)列;
③已知等比數(shù)列
的公比為
,若
,則數(shù)列
是單調(diào)遞增數(shù)列,不正確,例如-1,-2,-4,……,為單調(diào)遞減數(shù)列.
④記等差數(shù)列的前
項和為
,
若
,
,
可得:
,
,可得數(shù)列
的最大值一定在
處達到.正確.
故答案為:④.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟模式的改變,微商和電商已成為當(dāng)今城鄉(xiāng)一種新型的購銷平臺.已知經(jīng)銷某種商品的電商在任何一個銷售季度內(nèi),沒售出1噸該商品可獲利潤0.5萬元,未售出的商品,每1噸虧損0.3萬元.根據(jù)往年的銷售經(jīng)驗,得到一個銷售季度內(nèi)市場需求量的頻率分布直方圖如圖所示.已知電商為下一個銷售季度籌備了130噸該商品,現(xiàn)以
(單位:噸,
)表示下一個銷售季度的市場需求量,
(單位:萬元)表示該電商下一個銷售季度內(nèi)經(jīng)銷該商品獲得的利潤.
![]()
(Ⅰ)視
分布在各區(qū)間內(nèi)的頻率為相應(yīng)的概率,求
;
(Ⅱ)將
表示為
的函數(shù),求出該函數(shù)表達式;
(Ⅲ)在頻率分布直方圖的市場需求量分組中,以各組的區(qū)間中點值(組中值)代表該組的各個值,并以市場需求量落入該區(qū)間的頻率作為市場需求量取該組中值的概率(例如
,則取
的概率等于市場需求量落入
的頻率),求
的分布列及數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價格依次為60元/盒、65元/盒、80元/盒、90元/盒.為增加銷量,李明對這四種水果進行促銷:一次購買水果的總價達到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會得到支付款的80%.
①當(dāng)x=10時,顧客一次購買草莓和西瓜各1盒,需要支付__________元;
②在促銷活動中,為保證李明每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系
中,曲線
過點
,其參數(shù)方程為
(
為參數(shù),
),以
為極點,
軸非負半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線
的普通方程和曲線
的直角坐標方程;
(2)求已知曲線
和曲線
交于
兩點,且
,求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若
是互不相同的空間直線,
是不重合的平面,則下列命題中為真命題的是( )
A. 若
,則
B. 若
,則![]()
C. 若
,則
D. 若
,則![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
,
,其前
項和
滿足
,其中
.
(1)設(shè)
,證明:數(shù)列
是等差數(shù)列;
(2)設(shè)
,
為數(shù)列
的前
項和,求證:
;
(3)設(shè)
(
為非零整數(shù),
),試確定
的值,使得對任意
,都有
成立.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com