【題目】設函數f(x)=x+ax2+b·ln x,曲線y=f(x)過P(1,0),且在P點處的切線斜率為2.
(1)求a,b的值;
(2)證明:f(x)≤2x-2.
【答案】(1)a=-1,b=3.(2)證明見解析.
【解析】試題分析: (1)f ′(x)=1+2ax+
.(1分)
由已知條件得
即![]()
解得a=-1,b=3. (4分)
(2)f(x)的定義域為(0,+∞),
由(1)知f(x)=x-x2+3lnx.
設g(x)=f(x)-(2x-2)=2-x-x2+3lnx,則
g′(x)=-1-2x+
=-[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2013/4/25/1571196938878976/1571196944596992/EXPLANATION/95d34fb08ffd4817a1bd97b607440f2a.png]. (6分)
當0<x<1時,g′(x)>0;當x>1時,g′(x)<0.
所以g(x)在(0,1)單調遞增,在(1,+∞)單調遞減.(8分)
而g(1)=0,故當x>0時,g(x)≤0,即f(x)≤2x-2. (10分)
科目:高中數學 來源: 題型:
【題目】如圖,已知正三棱錐P﹣ABC的側面是直角三角形,PA=6,頂點P在平面ABC內的正投影為點D,D在平面PAB內的正投影為點E,連接PE并延長交AB于點G.![]()
(1)證明:G是AB的中點;
(2)在圖中作出點E在平面PAC內的正投影F(說明作法及理由),并求四面體PDEF的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知O為坐標原點,F是橢圓C:
=1(a>b>0)的左焦點,A,B分別為C的左,右頂點.P為C上一點,且PF⊥x軸,過點A的直線l與線段PF交于點M,與y軸交于點E.若直線BM經過OE的中點,則C的離心率為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=2x的焦點為F,平行于x軸的兩條直線l1 , l2分別交C于A,B兩點,交C的準線于P,Q兩點.
(1)若F在線段AB上,R是PQ的中點,證明AR∥FQ;
(2)若△PQF的面積是△ABF的面積的兩倍,求AB中點的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
(其中a為常數).
(1)當a=1時,求f(x)在
上的值域;
(2)若當x∈[0,1]時,不等式
恒成立,求實數a的取值范圍;
(3)設
,是否存在正數a,使得對于區間
上的任意三個實數m,n,p,都存在以f(g(m)),f(g(n)),f(g(p))為邊長的三角形?若存在,試求出這樣的a的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知奇函數f(x)=a-
(a∈R,e為自然對數的底數).
(1)判定并證明f(x)的單調性;
(2)若對任意實數x,f(x)>m2-4m+2恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】電視傳媒公司為了解某地區觀眾對某體育節目的收視情況,隨機抽取了100名觀眾進行調查,其中女性有55名,下面是根據調查結果繪制的觀眾日均收看該體育節目時間的頻率分布直方圖:
![]()
將日均收看該體育節目時間不低于40分鐘的觀眾稱為“體育迷”.
(1)根據已知條件完成下面的22列聯表,并據此資料你是否認為“體育迷”與性別有關?
非體育迷 | 體育迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(2)將上述調查所得到的頻率視為概率.現在從該地區大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數為X.若每次抽取的結果是相互獨立的,求X的分布列,期望E(X)和方差D(X).
附:
.
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法正確的序號是__________________.(寫出所有正確的序號)
①正切函數
在定義域內是增函數;
②已知函數
的最小正周期為
,將
的圖象向右平移
個單位長度,所得圖象關于
軸對稱,則
的一個值可以是
;
③若
,則
三點共線;④函數
的最小值為
;
⑤函數
在
上是增函數,則
的取值范圍是
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com