【題目】有六名同學參加演講比賽,編號分別為1,2,3,4,5,6,比賽結果設特等獎一名,
,
,
,
四名同學對于誰獲得特等獎進行預測.
說:不是1號就是2號獲得特等獎;
說:3號不可能獲得特等獎;
說:4,5,6號不可能獲得特等獎;
說:能獲得特等獎的是4,5,6號中的一個.公布的比賽結果表明,
,
,
,
中只有一個判斷正確.根據(jù)以上信息,獲得特等獎的是( )號同學.
A.1B.2C.3D.4,5,6號中的一個
科目:高中數(shù)學 來源: 題型:
【題目】某工廠為提高生產(chǎn)效率,開展技術創(chuàng)新活動,提出了完成某項生產(chǎn)任務的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務的工作時間(單位:min)繪制了如下莖葉圖:
![]()
(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由;
(2)求40名工人完成生產(chǎn)任務所需時間的中位數(shù)
,并將完成生產(chǎn)任務所需時間超過
和不超過
的工人數(shù)填入下面的列聯(lián)表:
超過 | 不超過 | |
第一種生產(chǎn)方式 | ||
第二種生產(chǎn)方式 |
(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認為兩種生產(chǎn)方式的效率有差異?
附:
,
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
過點
,且離心率為
.
(1)求橢圓
的方程;
(2)已知圓方程為
,過圓上任意一點作圓的切線,切線與橢圓
交于
,
兩點,
為坐標原點,設
為
的中點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線
是由兩個定點
和點
的距離之積等于
的所有點組成的,對于曲線
,有下列四個結論:①曲線
是軸對稱圖形;②曲線
上所有的點都在單位圓
內;③曲線
是中心對稱圖形;④曲線
上所有點的縱坐標
.其中,所有正確結論的序號是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
如圖,已知
是以
的直角三角形鐵皮,
米,
分別是邊
上不與端點重合的動點,且
.現(xiàn)將
鐵皮沿
折起至
的位置,使得平面
平面
,連接
,如圖所示.現(xiàn)要制作一個四棱錐
的封閉容器,其中
鐵皮和直角梯形
鐵皮分別是這個封閉容器的一個側面和底面,其他三個側面用相同材料的鐵皮無縫焊接密封而成(假設制作過程中不浪費材料,且鐵皮厚度忽略不計).
![]()
(1)若
為
邊的中點,求制作三個新增側面的鐵皮面積是多少平方米?
(2)求這個封閉容器的最大體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),f′(x),g'(x)為其導函數(shù),當x<0時,f′(x)
g(x)+f(x)
g'(x)<0且g(﹣3)=0,則使得不等式f(x)
g(x)<0成立的x的取值范圍是( )
A.(﹣∞,﹣3)B.(﹣3,0)C.(0,3)D.(3,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,
是邊長
,
的矩形硬紙片,在硬紙片的四角切去邊長相等的小正方形后,再沿虛線折起,做成一個無蓋的長方體盒子,
、
是
上被切去的小正方形的兩個頂點,設
.
![]()
![]()
(1)將長方體盒子體積
表示成
的函數(shù)關系式,并求其定義域;
(2)當
為何值時,此長方體盒子體積
最大?并求出最大體積.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com