【題目】在平面直角坐標(biāo)系xOy中,圓C的方程為x2+y2﹣8x+15=0,若直線y=kx﹣2上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓C有公共點(diǎn),則k的最大值是 .
【答案】![]()
【解析】解:∵圓C的方程為x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圓C是以(4,0)為圓心,1為半徑的圓; 又直線y=kx﹣2上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓C有公共點(diǎn),
∴只需圓C′:(x﹣4)2+y2=1與直線y=kx﹣2有公共點(diǎn)即可.
設(shè)圓心C(4,0)到直線y=kx﹣2的距離為d,
則d=
≤2,即3k2﹣4k≤0,
∴0≤k≤
.
∴k的最大值是
.
故答案為:
.
由于圓C的方程為(x﹣4)2+y2=1,由題意可知,只需(x﹣4)2+y2=1與直線y=kx﹣2有公共點(diǎn)即可.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4x﹣a2x+1+a+1,a∈R.
(1)當(dāng)a=1時(shí),解方程f(x)﹣1=0;
(2)當(dāng)0<x<1時(shí),f(x)<0恒成立,求a的取值范圍;
(3)若函數(shù)f(x)有零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知非零向量
,
滿足|
|=1,且(
﹣
)(
+
)=
.
(1)求|
|;
(2)當(dāng)
=-
時(shí),求向量
與
+2
的夾角θ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面為平行四邊形,M為PC中點(diǎn). ![]()
(1)求證:BC∥平面PAD;
(2)求證:AP∥平面MBD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
支籃球隊(duì)進(jìn)行單循環(huán)比賽(任兩支球隊(duì)恰進(jìn)行一場(chǎng)比賽),任兩支球隊(duì)之間勝率都是
.單循環(huán)比賽結(jié)束,以獲勝的場(chǎng)次數(shù)作為該隊(duì)的成績(jī),成績(jī)按從大到小排名次順序,成績(jī)相同則名次相同.有下列四個(gè)命題:
:恰有四支球隊(duì)并列第一名為不可能事件;
:有可能出現(xiàn)恰有兩支球隊(duì)并列第一名;
:每支球隊(duì)都既有勝又有敗的概率為
;
:五支球隊(duì)成績(jī)并列第一名的概率為
.
其中真命題是
A.
,
,
B.
,
,
C.
.
.
D.
.
.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐P﹣ABCD,其三視圖和直觀圖如圖所示,E為BC中點(diǎn). (Ⅰ)求此幾何體的體積;
(Ⅱ)求證:平面PAE⊥平面PDE.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=
sin(2x﹣
)+1的圖象向左平移
個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位長(zhǎng)度后,得到函數(shù)g(x)的圖象,則函數(shù)g(x)具有的性質(zhì)(填入所有正確的序號(hào)) ①最大值為
,圖象關(guān)于直線x=
對(duì)稱;②在(﹣
,0)上單調(diào)遞增,且為偶函數(shù);③最小正周期為π;④圖象關(guān)于點(diǎn)(
,0)對(duì)稱,⑤在(0,
)上單調(diào)遞增,且為奇函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把函數(shù)y=sinx(x∈R)的圖象上所有的點(diǎn)的橫坐標(biāo)縮短到原來的
倍(縱坐標(biāo)不變),再把所得圖象向左平行移動(dòng)
個(gè)單位長(zhǎng)度,得到的圖象所表示的函數(shù)是( )
A.y=sin(
x+
),x∈R
B.y=sin(
x+
),x∈R
C.y=sin(2x+
),x∈R
D.y=sin(2x+
),x∈R
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的長(zhǎng)軸長(zhǎng)為6,且橢圓
與圓
:
的公共弦長(zhǎng)為
.
(1)求橢圓
的方程.
(2)過點(diǎn)
作斜率為
的直線
與橢圓
交于兩點(diǎn)
,
,試判斷在
軸上是否存在點(diǎn)
,使得
為以
為底邊的等腰三角形.若存在,求出點(diǎn)
的橫坐標(biāo)的取值范圍,若不存在,請(qǐng)說明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com