【題目】橢圓C焦點在y軸上,離心率為
,上焦點到上頂點距離為2﹣
.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線l與橢圓C交與P,Q兩點,O為坐標(biāo)原點,△OPQ的面積S△OPQ=1,則|
|2+|
|2是否為定值,若是求出定值;若不是,說明理由.
【答案】
(1)解:由題意可得
,
解得
,
可得b2=a2﹣c2=1,
即有橢圓C的標(biāo)準(zhǔn)方程為:
;
(2)解:設(shè)P(x1,y1),Q(x2,y2)
①當(dāng)l斜率不存在時,P,Q兩點關(guān)于x軸對稱,
S△OPQ=|x1||y1|=1,
又
,解得
,
|
|2+|
|2=2(x12+y12)=2×(
+2)=5;
②當(dāng)直線l的斜率存在時,設(shè)直線l的方程為y=kx+m,
由題意知m≠0,將其代入
,得
(k2+4)x2+2kmx+m2﹣4=0,
即有
,
則
,O到PQ距離
,
則
,
解得k2+4=2m2,滿足△>0,
則
,
即有|
|2+|
|2=(x12+y12)(x22+y22)
= ![]()
=
=﹣3+8=5,
綜上可得|
|2+|
|2為定值5.
【解析】(1)運用橢圓的離心率公式和兩點的距離公式,及a,b,c的關(guān)系,解得a,b,進(jìn)而得到橢圓方程;(2)設(shè)P(x1 , y1),Q(x2 , y2),討論直線l的斜率不存在和存在,設(shè)出直線方程,代入橢圓方程,運用韋達(dá)定理和判別式大于0,結(jié)合三角形的面積公式,點到直線的距離公式和弦長公式,化簡整理,即可得到所求和為定值5.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系
取相同的長度單位,且以原點
為極點,以
軸正半軸為極軸)中,圓
的方程為
.
(1)求圓
的直角坐標(biāo)方程;
(2)設(shè)圓
與直線
交于點
,若點
的坐標(biāo)為
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】廣東某市一玩具廠生產(chǎn)一種玩具深受大家喜歡,經(jīng)市場調(diào)查該商品每月的銷售量
(單位:千件)與銷售價格
(單位:元/件)滿足關(guān)系式
,其中
,
為常數(shù).已知銷售價格為4元/件時,每日可售出玩具21千件.
(1)求
的值;
(2)假設(shè)該廠生產(chǎn)這種玩具的成本、員工工資等所有開銷折合為每件2元(只考慮銷售出的件數(shù)),試確定銷售價格
的值,使該廠每日銷售這種玩具所獲得的利潤最大.(保留1位小數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐
中,
平面
,底面
是菱形,
,
,
.
為
與
的交點,
為棱
上一點,
(1)證明:平面
⊥平面
;
(2)若三棱錐
的體積為
,
求證:
∥平面
.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系
中,直線
的參數(shù)方程是
(
為參數(shù)),以
為極點,
軸的正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
,且直線
與曲線
交于
兩點.
(Ⅰ)求曲線
的直角坐標(biāo)方程及直線
恒過的定點
的坐標(biāo);
(Ⅱ)在(Ⅰ)的條件下,若
,求直線
的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點
是橢圓
的一個頂點,
的長軸是圓
的直徑.
是過點
且互相垂直的兩條直線,其中
交圓
于兩點
交橢圓
于另一點
.
![]()
(1)求橢圓
的方程;
(2)求
面積取最大值時直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分14分)如圖,在四棱錐
中,
平面
,底面
是菱形,
,
為
與
的交點,
為
上任意一點.
![]()
(1)證明:平面
平面
;
(2)若
平面
,并且二面角
的大小為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,關(guān)于正方體ABCD﹣A1B1C1D1 , 下面結(jié)論錯誤的是( ) ![]()
A.BD⊥平面ACC1A1
B.AC⊥BD
C.A1B∥平面CDD1C1
D.該正方體的外接球和內(nèi)接球的半徑之比為2:1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在(﹣∞,0)∪(0,+∞)上的函數(shù)f(x),總有f(mn)=f(m)f(n),且f(x)>0,當(dāng)x>1時,f(x)>1.
(1)求f(1),f(﹣1)的值;
(2)判斷函數(shù)的奇偶性,并證明;
(3)判斷函數(shù)在(0,+∞)上的單調(diào)性,并證明.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com