在平面直角坐標(biāo)系
中,已知
,直線
, 動(dòng)點(diǎn)
到
的距離是它到定直線
距離的
倍. 設(shè)動(dòng)點(diǎn)
的軌跡曲線為
.
(1)求曲線
的軌跡方程.
(2)設(shè)點(diǎn)
, 若直線
為曲線
的任意一條切線,且點(diǎn)
、
到
的距離分別為
,試判斷
是否為常數(shù),請(qǐng)說明理由.
(1)
(2)是常數(shù)
解析試題分析:解: (1)由題意,設(shè)點(diǎn)
,則有
,點(diǎn)
到直線的距離
,故
,化簡(jiǎn)后得:
.
故動(dòng)點(diǎn)
的軌跡方程為
(2)
是常數(shù),證明如下:
若切線
斜率不存在,則切線方程為
,此時(shí)![]()
當(dāng)切線
斜率存在時(shí),設(shè)切線
:
,代入
,整理得:![]()
,化簡(jiǎn)得: ![]()
又由
:
,
,
=常數(shù).
綜上,故對(duì)任意切線
,
是常數(shù)
考點(diǎn):雙曲線的方程
點(diǎn)評(píng):關(guān)于曲線的大題,第一問一般是求出曲線的方程,第二問常與直線結(jié)合起來,當(dāng)涉及到交點(diǎn)時(shí),常用到根與系數(shù)的關(guān)系式:
(
)。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的離心率為
,且經(jīng)過點(diǎn)
.
(Ⅰ)求橢圓的方程;
(Ⅱ)如果過點(diǎn)
的直線與橢圓交于
兩點(diǎn)(
點(diǎn)與
點(diǎn)不重合),
①求
的值;
②當(dāng)
為等腰直角三角形時(shí),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,
為半圓,
為半圓直徑,
為半圓圓心,且
,
為線段
的中點(diǎn),已知
,曲線
過
點(diǎn),動(dòng)點(diǎn)
在曲線
上運(yùn)動(dòng)且保持
的值不變.
(I)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線
的方程;
(II)過點(diǎn)
的直線
與曲線
交于
兩點(diǎn),與
所在直線交于
點(diǎn),
,
證明:
為定值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示:已知過拋物線
的焦點(diǎn)F的直線
與拋物線相交于A,B兩點(diǎn)。![]()
(1)求證:以AF為直徑的圓與x軸相切;
(2)設(shè)拋物線
在A,B兩點(diǎn)處的切線的交點(diǎn)為M,若點(diǎn)M的橫坐標(biāo)為2,求△ABM的外接圓方程;
(3)設(shè)過拋物線
焦點(diǎn)F的直線
與橢圓
的交點(diǎn)為C、D,是否存在直線
使得
,若存在,求出直線
的方程,若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系
中,設(shè)動(dòng)點(diǎn)
到定點(diǎn)
的距離與到定直線
的距離相等,記
的軌跡為
.又直線
的一個(gè)方向向量
且過點(diǎn)
,
與
交于
兩點(diǎn),求
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知直線
與拋物線
相切于點(diǎn)
)且與
軸交于點(diǎn)
為坐標(biāo)原點(diǎn),定點(diǎn)B的坐標(biāo)為
.![]()
(1)若動(dòng)點(diǎn)
滿足
|
=
,求點(diǎn)
的軌跡
.
(2)若過點(diǎn)
的直線
(斜率不等于零)與(1)中的軌跡
交于不同的兩點(diǎn)
,試求
與
面積之比的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知?jiǎng)訄A過定點(diǎn)A(4,0), 且在y軸上截得的弦MN的長(zhǎng)為8.
(Ⅰ) 求動(dòng)圓圓心的軌跡C的方程;
(Ⅱ) 已知點(diǎn)B(-1,0), 設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點(diǎn)P, Q, 若x軸是
的角平分線, 證明直線l過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
(a>b>0)的焦距為4,且與橢圓
有相同的離心率,斜率為k的直線l經(jīng)過點(diǎn)M(0,1),與橢圓C交于不同兩點(diǎn)A、B.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時(shí),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
求中心在坐標(biāo)原點(diǎn),對(duì)稱軸為坐標(biāo)軸且經(jīng)過點(diǎn)
,一條漸近線的傾斜角為
的雙曲線方程。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com