【題目】對于函數(shù):①
,②
,③
,判斷如下三個命題的真假:
命題甲:
是偶函數(shù);
命題乙:
在
上是減函數(shù),在
上是增函數(shù);
命題丙:
在
是增函數(shù).
則能使命題甲、乙、丙均為真的所有函數(shù)的序號是__________.
【答案】②
【解析】對于第一個,令
,
,從而可知不是增函數(shù),不符合命題丙.對于第三個,
不是偶函數(shù),不符合命題甲.對于第二個,
,為偶函數(shù),符合命題甲,由于
是對稱軸為
的偶函數(shù),且開口向上,符合命題乙.
為
上的增函數(shù),符合命題丙,故第二個函數(shù)符合題意.
點睛:本題主要考查函數(shù)的單調(diào)性與奇偶性.對于命題甲的判斷,只需要先將
的表達式求解出來,利用奇偶性的定義
來判斷即可.對于命題乙的判斷,需要我們根據(jù)所給函數(shù)的單調(diào)性來具體判斷.對于命題丙,需要先求出
的表達式,然后根據(jù)表達式來判斷.
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中錯誤的是( )
A.在三角形中,已知兩邊及其一邊的對角,不能用余弦定理求解三角形
B.余弦定理揭示了任意三角形邊角之間的關系,因此它適用于任何三角形
C.利用余弦定理,可以解決已知三角形三邊求角的問題
D.在三角形中,勾股定理是余弦定理的特例
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設有以下四個命題:
①底面是平行四邊形的四棱柱是平行六面體;
②底面是矩形的平行六面體是長方體;
③直四棱柱是直平行六面體;
④棱臺的相對側(cè)棱延長后必交于一點.
其中正確命題的序號是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個盒子里裝有標號1、2、3、4的4張形狀大小完全相同的標簽,先后隨機地選取兩張標簽,根據(jù)下列條件,分別求兩張標簽上的數(shù)字為相鄰整數(shù)的概率.
(1)標簽的選取是無放回的;
(2)標簽的選取是有放回的.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一次籃球定點投籃訓練中,規(guī)定每人最多投3次,在
處每投進一球得3分;在
處每投進一球得2分.如果前兩次得分之和超過3分就停止投籃;否則投第三次.某同學在
處的投中率
,在
處的投中率為
,該同學選擇先在
處投第一球,以后都在
處投,且每次投籃都互不影響,用
表示該同學投籃訓練結(jié)束后所得的總分,其分布列為:
| 0 | 2 | 3 | 4 | 5 |
| 0.03 |
|
|
|
|
(1)求
的值;
(2)求隨機變量
的數(shù)學期望
;
(3)試比較該同學選擇上述方式投籃得分超過3分與選擇都在
處投籃得分超過3分的概率的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】春節(jié)期間某超市搞促銷活動,當顧客購買商品的金額達到一定數(shù)量后可以參加抽獎活動,活動規(guī)則為:從裝有
個黑球,
個紅球,
個白球的箱子中(除顏色外,球完全相同)摸球.
(Ⅰ)當顧客購買金額超過
元而不超過
元時,可從箱子中一次性摸出
個小球,每摸出一個黑球獎勵
元的現(xiàn)金,每摸出一個紅球獎勵
元的現(xiàn)金,每摸出一個白球獎勵
元的現(xiàn)金,求獎金數(shù)不少于
元的概率;
(Ⅱ)當購買金額超過
元時,可從箱子中摸兩次,每次摸出
個小球后,放回再摸一次,每摸出一個黑球和白球一樣獎勵
元的現(xiàn)金,每摸出一個紅球獎勵
元的現(xiàn)金,求獎金數(shù)小于
元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知渡船在靜水中速度
的大小為
,河水流速
的大小為
.如圖渡船船頭
方向與水流方向成
夾角,且河面垂直寬度為
.
(Ⅰ)求渡船的實際速度與水流速度的夾角;
(Ⅱ)求渡船過河所需要的時間.[提示:
]
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com