(本小題滿分12分)
正項(xiàng)單調(diào)數(shù)列
的首項(xiàng)為
,
時(shí),
,數(shù)列
對(duì)任意
均有![]()
(1)求證:數(shù)列
是等差數(shù)列;
(2)已知
,數(shù)列
滿足
,記數(shù)列
的前
項(xiàng)和為
,求證
.
(1)根據(jù)定義法來(lái)證明即可。(2)利用錯(cuò)位相減法求和然后證明比較大小即可。
解析試題分析:.解:(1)
,
為等比數(shù)列,設(shè)公比為![]()
又![]()
![]()
![]()
![]()
![]()
,即![]()
數(shù)列
是等差數(shù)列
(2)![]()
![]()
![]()
![]()
![]()
![]()
考點(diǎn):考查了等差數(shù)列的概念和求和知識(shí)。
點(diǎn)評(píng):對(duì)于判定數(shù)列是否為等差數(shù)列,則要考慮到相鄰兩項(xiàng)的差是否為定值,同時(shí)要利用定義的變形式
來(lái)證明結(jié)論。另外要準(zhǔn)確并熟練的對(duì)于數(shù)列錯(cuò)位相減法的求和的應(yīng)用屬于中檔題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,
為正整數(shù).
(Ⅰ)求
和
的值;
(Ⅱ)數(shù)列
的通項(xiàng)公式為
(
),求數(shù)列
的前
項(xiàng)和
;
(Ⅲ)設(shè)數(shù)列
滿足:
,
,設(shè)
,若(Ⅱ)中的
滿足:對(duì)任意不小于3的正整數(shù)n,
恒成立,試求m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列
的前n項(xiàng)和
(n為正整數(shù))。
(Ⅰ)令
,求證數(shù)列
是等差數(shù)列,并求數(shù)列
的通項(xiàng)公式;
(Ⅱ)令
,
試比較
與
的大小,并予以證明。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分16分)
已知有窮數(shù)列
共有
項(xiàng)(整數(shù)
),首項(xiàng)
,設(shè)該數(shù)列的前
項(xiàng)和為
,且
其中常數(shù)
⑴求
的通項(xiàng)公式;⑵若
,數(shù)列
滿足![]()
求證:
;
⑶若⑵中數(shù)列
滿足不等式:
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題12分)已知數(shù)列
是各項(xiàng)均不為
的等差數(shù)列,公差為
,
為其前
項(xiàng)和,且滿足
,
.?dāng)?shù)列
滿足
,
為數(shù)列
的前n項(xiàng)和.
(Ⅰ)求數(shù)列
的通項(xiàng)公式
和數(shù)列
的前n項(xiàng)和
;
(Ⅱ)若對(duì)任意的
,不等式
恒成立,求實(shí)數(shù)
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
,點(diǎn)
在函數(shù)
的圖象上,其中![]()
(1)證明數(shù)列
是等比數(shù)列;
(2)設(shè)
,求
及數(shù)列
的通項(xiàng);
(3)記
,求數(shù)列
的前
項(xiàng)和
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分13分)設(shè)數(shù)列
為單調(diào)遞增的等差數(shù)列
且
依次成等比數(shù)列.
(Ⅰ)求數(shù)列
的通項(xiàng)公式
;
(Ⅱ)若
求數(shù)列
的前
項(xiàng)和
;
(Ⅲ)若
,求證:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分) 已知曲線
,從
上的點(diǎn)
作
軸的垂線,交
于點(diǎn)
,再?gòu)狞c(diǎn)
作
軸的垂線,交
于點(diǎn)
,
設(shè)![]()
.。
求數(shù)列
的通項(xiàng)公式;
記
,數(shù)列
的前
項(xiàng)和為
,試比較
與
的大小
;
記
,數(shù)列
的前
項(xiàng)和為
,試證明:
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)
已知數(shù)列
滿足![]()
(Ⅰ)證明:數(shù)列
為等比數(shù)列;
(Ⅱ)求數(shù)列
的通項(xiàng)
以及前n項(xiàng)和
;
(Ⅲ)如果對(duì)任意的正整數(shù)
都有
求
的取值范圍。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com