【題目】若直線ax﹣by+2=0(a>0,b>0)被圓x2+y2+4x﹣4y﹣1=0所截得的弦長為6,則
的最小值為( )
A.10
B.![]()
C.![]()
D.![]()
【答案】C
【解析】解:圓x2+y2+4x﹣4y﹣1=(x+2)2+(y﹣2)2=9是以(﹣2,2)為圓心,以3為半徑的圓,
又∵直線ax﹣by+2=0(a>0,b>0)被圓x2+y2+4x﹣4y﹣1=0所截得的弦長為6,
∴直線過圓心,
∴a+b=1,
∴
=(
)(a+b)=5+
≥5+2
=5+2
,當且僅當a=
﹣2,b=3﹣
時取等號,
∴
的最小值的最小值為5+2
,
故選:C.
由已知中圓的方程x2+y2+4x﹣4y﹣1=0我們可以求出圓心坐標,及圓的半徑,結合直線ax﹣by+2=0(a>0,b>0)被圓x2+y2+4x﹣4y﹣1=0所截得的弦長為6,我們易得到a,b的關系式,再根據基本不等式中1的活用,即可得到答案.
科目:高中數學 來源: 題型:
【題目】如圖,已知PA⊥⊙O所在的平面,AB是⊙O的直徑,AB=2,C是⊙O上一點,且AC=BC,PC與⊙O所在的平面成45°角,E是PC中點.F為PB中點. ![]()
(1)求證:EF∥面ABC;
(2)求證:EF⊥面PAC;
(3)求三棱錐B﹣PAC的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某紡紗廠生產甲、乙兩種棉紗,已知生產甲種棉紗1噸需耗一級籽棉2噸、二級籽棉1噸;生產乙種棉紗1噸需耗一級籽棉1噸,二級籽棉2噸.每1噸甲種棉紗的利潤為900元,每1噸乙種棉紗的利潤為600元.工廠在生產這兩種棉紗的計劃中,要求消耗一級籽棉不超過250噸,二級籽棉不超過300噸.問甲、乙兩種棉紗應各生產多少噸,能使利潤總額最大?并求出利潤總額的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,矩形ABCD 中,AD⊥平面ABE,AE=FB=BC=2,F為CE上的點,且BF⊥平面ACE,AC,BD交于G點 ![]()
(1)求證:AE∥平面BFD
(2)求證:AE⊥平面BCE
(3)求三棱柱C﹣BGF的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
:
的長軸長為6,且橢圓
與圓
:
的公共弦長為
.
(1)求橢圓
的方程.
(2)過點
作斜率為
的直線
與橢圓
交于兩點
,
,試判斷在
軸上是否存在點
,使得
為以
為底邊的等腰三角形.若存在,求出點
的橫坐標的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐
中,底面
是平行四邊形,
,側面
底面
,
,
,
分別為
的中點,點
在線段
上.
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)如果直線
與平面
所成的角和直線
與平面
所成的角相等,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com