【題目】為打贏打好脫貧攻堅戰,實現建檔立卡貧困人員穩定增收,某地區把特色養殖確定為脫貧特色主導產業,助力鄉村振興.現計劃建造一個室內面積為
平方米的矩形溫室大棚,并在溫室大棚內建兩個大小、形狀完全相同的矩形養殖池,其中沿溫室大棚前、后、左、右內墻各保留
米寬的通道,兩養殖池之間保留2米寬的通道.設溫室的一邊長度為
米,如圖所示.
![]()
(1)將兩個養殖池的總面積
表示
為的函數,并寫出定義域;
(2)當溫室的邊長
取何值時,總面積
最大?最大值是多少?
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( )
A. “f(0)
”是“函數f(x)是奇函數”的充要條件
B. 若p:
,
,則
:
,![]()
C. “若
,則
”的否命題是“若
,則
”
D. 若
為假命題,則p,q均為假命題
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓
的左焦點為
,離心率為
,
為圓
的圓心.
(1)求橢圓的方程;
(2)已知過橢圓右焦點
的直線
交橢圓于
兩點,過
且與
垂直的直線
與圓
交于
兩點,求四邊形
面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
為等差數列,且
,其前8項和為52,
是各項均為正數的等比數列,且滿足
,
.
(1)求數列
和
的通項公式;
(2)令
,數列
的前
項和為
,若對任意正整數
,都有
成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
:
的左右焦點分別為
,
,左頂點為
,點
在橢圓
上,且
的面積為
.
(1)求橢圓
的方程;
(2)過原點
且與
軸不重合的直線交橢圓
于
,
兩點,直線
分別與
軸交于點
,
,.求證:以
為直徑的圓恒過交點
,
,并求出
面積的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com