【題目】已知函數(shù)
,過點(diǎn)
作與
軸平行的直線交函數(shù)
的圖像于點(diǎn)
,過點(diǎn)
作
圖像的切線交
軸于點(diǎn)
,則
面積的最小值為____.
【答案】![]()
【解析】
求出f(x)的導(dǎo)數(shù),令x=a,求得P的坐標(biāo),可得切線的斜率,運(yùn)用點(diǎn)斜式方程可得切線的方程,令y=0,可得B的坐標(biāo),再由三角形的面積公式可得△ABP面積S,求出導(dǎo)數(shù),利用導(dǎo)數(shù)求最值,即可得到所求值.
函數(shù)f(x)=
的導(dǎo)數(shù)為f′(x)
,
由題意可令x=a,解得y
,
可得P(a,
),
即有切線的斜率為k
,
切線的方程為y﹣
(x
),
令y=0,可得x=a﹣1,
即B( a﹣1,0),
在直角三角形PAB中,|AB|=1,|AP|
,
則△ABP面積為S(a)
|AB||AP|![]()
,a>0,
導(dǎo)數(shù)S′(a)![]()
,
當(dāng)a>1時(shí),S′>0,S(a)遞增;當(dāng)0<a<1時(shí),S′<0,S(a)遞減.
即有a=1處S取得極小值,且為最小值
e.
故答案為:
e.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中國詩詞大會(huì)》(第二季)亮點(diǎn)頗多,十場(chǎng)比賽每場(chǎng)都有一首特別設(shè)計(jì)的開場(chǎng)詩詞,在聲光舞美的配合下,百人團(tuán)齊聲朗誦,別有韻味.若《將進(jìn)酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另確定的兩首詩詞排在后六場(chǎng),且《將進(jìn)酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰且均不排在最后,則后六場(chǎng)的排法有( )
A.
種 B.
種 C.
種 D.
種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲線
由曲線
和曲線
組成,其中點(diǎn)
為曲線
所在圓錐曲線的焦點(diǎn),點(diǎn)
為曲線
所在圓錐曲線的焦點(diǎn).
![]()
(Ⅰ)若
,求曲線
的方程;
(Ⅱ)如圖,作直線
平行于曲線
的漸近線,交曲線于點(diǎn)
,求證:弦
的中點(diǎn)
必在曲線
的另一條漸進(jìn)線上;
(Ⅲ)對(duì)于(Ⅰ)中的曲線
,若直線
過點(diǎn)
交曲線
于點(diǎn)
,求
與
面積之和的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠家舉行大型的促銷活動(dòng),經(jīng)測(cè)算,當(dāng)某產(chǎn)品促銷費(fèi)用為x(萬元)時(shí),銷售量t(萬件)滿足
(其中
,
).現(xiàn)假定產(chǎn)量與銷售量相等,已知生產(chǎn)該產(chǎn)品t萬件還需投入成本
萬元(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為
元/件.
(1)將該產(chǎn)品的利潤y(萬元)表示為促銷費(fèi)用x(萬元)的函數(shù);
(2)促銷費(fèi)用投入多少萬元時(shí),廠家的利潤最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)當(dāng)
時(shí),求函數(shù)
的最大值;
(2)設(shè)
,求函數(shù)
的最大值;
(3)已知
,求函數(shù)
的最大值;
(4)設(shè)
,且
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(I)若
在
處取得極值,求過點(diǎn)
且與
在
處的切線平行的直線方程;
(II)當(dāng)函數(shù)
有兩個(gè)極值點(diǎn)
,且
時(shí),總有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線
(
為參數(shù)),曲線
(
為參數(shù)).
(1)設(shè)
與
相交于
兩點(diǎn),求
;
(2)若把曲線
上各點(diǎn)的橫坐標(biāo)壓縮為原來的
倍,縱坐標(biāo)壓縮為原來的
倍,得到曲線
,設(shè)點(diǎn)
是曲線
上的一個(gè)動(dòng)點(diǎn),求它到直線
的距離的最大時(shí),點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
且
,函數(shù)
,
.
(1)指出
的單調(diào)性(不要求證明);
(2)若有
求
的值;
(3)若
,求使不等式
恒成立的
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】就實(shí)數(shù)
的取值范圍,討論關(guān)于
的函數(shù)
與
軸的交點(diǎn)個(gè)數(shù).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com