【題目】已知
,
分別是橢圓
:
(
)的左、右焦點,離心率為
,
,
分別是橢圓的上、下頂點,
.
(1)求橢圓
的方程;
(2)過
作直線
與
交于
,
兩點,求三角形
面積的最大值(
是坐標(biāo)原點).
【答案】(1)
;(2)
.
【解析】試題分析:(1)根據(jù)離心率為
,
,列出關(guān)于
、
、
的方程組,結(jié)合性質(zhì)
,求出
、
、
,即可得橢圓
的方程;(2)直線
斜率存在,設(shè)其方程為
.,直線方程與橢圓方程聯(lián)立,根據(jù)韋達定理,弦長公式、點到直線距離公式及三角形面積公式將角形
面積用
表示,利用基本不等式 即可得結(jié)果.
試題解析:(1)由題知,
,
,
,
∴
,∴
,①
∵
,∴
,∴
,②
①②聯(lián)立解得
,
,∴橢圓
的方程為
.
(2)設(shè)
,
,顯然直線
斜率存在,設(shè)其方程為
,
代入
,整理得
,
則
,即
,
,
,
,
所以
到
的距離
,
所以三角形
面積
,
設(shè)
,所以
,
當(dāng)且僅當(dāng)
,即
,即
,即
時取等號,
所以
面積的最大值為
.
【方法點晴】本題主要考查待定系數(shù)法求橢圓方程及圓錐曲線求最值,屬于難題.解決圓錐曲線中的最值問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來解決,非常巧妙;二是將圓錐曲線中最值問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法,本題(2)就是用的這種思路,利用均值不等式法求三角形最值的.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次水下科研考察活動中,需要潛水員潛入水深為60米的水底進行作業(yè),根據(jù)以往經(jīng)驗,潛水員下潛的平均速度為
(米/單位時間),每單位時間的用氧量為
(升),在水底作業(yè)10個單位時間,每單位時間用氧量為0.9(升),返回水面的平均速度為
(米/單位時間),每單位時間用氧量為1.5(升),記潛水員在此次考察活動中的總用氧量為
(升).
(1)求
關(guān)于
的函數(shù)關(guān)系式;
(2)求當(dāng)下潛速度
取什么值時,總用氧量最少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】請認(rèn)真閱讀下列程序框圖,然后回答問題,其中n0∈N. ![]()
(1)若輸入n0=0,寫出所輸出的結(jié)果;
(2)若輸出的結(jié)果中有5,求輸入的自然數(shù)n0的所有可能的值;
(3)若輸出的結(jié)果中,只有三個自然數(shù),求輸入的自然數(shù)n0的所有可能的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+(1﹣a)x2﹣a(a+2)x+b(a,b∈R).
(1)若函數(shù)f(x)的圖象過原點,且在原點處的切線斜率為﹣3,求a,b的值;
(2)若曲線y=f(x)存在兩條垂直于y軸的切線,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x2+ax﹣2a2+3a)ex(x∈R),其中a∈R.
(1)當(dāng)a=0時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當(dāng)
時,求函數(shù)f(x)的單調(diào)區(qū)間和極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某景點擬建一個扇環(huán)形狀的花壇(如圖所示),按設(shè)計要求扇環(huán)的周長為36米,其中大圓弧所在圓的半徑為14米,設(shè)小圓弧所在圓的半徑為
米,圓心角為
(弧度).
⑴ 求
關(guān)于
的函數(shù)關(guān)系式;
⑵ 已知對花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為16元/米,設(shè)花壇的面積與裝飾總費用之比為
,求
關(guān)于
的函數(shù)關(guān)系式,并求出
的最大值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
的定義域為(﹣1,1),滿足f(﹣x)=﹣f(x),且f(
)=
.
(1)求函數(shù)f(x)的解析式;
(2)證明f(x)在(﹣1,1)上是增函數(shù);
(3)解不等式f(x2﹣1)+f(x)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AA1B1B是圓柱的軸截面,C是底面圓周上異于A,B的一點,AA1=AB=2. ![]()
(1)求證:平面AA1C⊥平面BA1C;
(2)若AC=BC,求幾何體A1﹣ABC的體積V.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
是定義在
上的奇函數(shù).
(1)當(dāng)
時,
,若當(dāng)
時,
恒成立,求
的最小值;
(2)若
的圖像關(guān)于
對稱,且
時,
,求當(dāng)
時,
的解析式;
(3)當(dāng)
時,
.若對任意的
,不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com