【題目】在公比為正數(shù)的等比數(shù)列{an}中,
,
,數(shù)列{bn}(bn>0)的前n項(xiàng)和為Sn滿足
(n≥2),且S10=100.
( I)求數(shù)列{an}和數(shù)列{bn}的通項(xiàng)公式;
( II)求數(shù)列{anbn}的前n項(xiàng)和為Tn .
【答案】解:(I)設(shè){an}的公比為q(q>0),則
,
∴3q2+8q﹣3=0,由q>0,解得
,
,
∴
.
∵
=
,
又bn>0,
,∴
,數(shù)列
構(gòu)成一個(gè)公差為1的等差數(shù)列,
∵
,∴S1=1,∴
,
.
當(dāng)n=1,b1=S1=1,
當(dāng)n≥2,bn=Sn﹣Sn﹣1=2n﹣1(n=1也滿足).
(II)
.
∴
,
,
∴
,
∴
.
【解析】(I)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式可得an , Sn , 再利用遞推關(guān)系可得bn . (II)
.利用“錯(cuò)位相減法”、等比數(shù)列的求和公式即可得出.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式的相關(guān)知識可以得到問題的答案,需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系
;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F1 , F2分別是橢圓
=1的左、右焦點(diǎn).
(1)若M是該橢圓上的一點(diǎn),且∠F1MF2=120°,求△F1MF2的面積;
(2)若P是該橢圓上的一個(gè)動(dòng)點(diǎn),求
的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos2x+2sin2x+2sinx.
(1)將函數(shù)f(2x)的圖象向右平移
個(gè)單位得到函數(shù)g(x)的圖象,若x∈
,求函數(shù)g(x)的值域;
(2)已知a,b,c分別為△ABC中角A,B,C的對邊,且滿足f(A)=
+1,A∈
,a=2
,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}滿足:a1=1,an+1=3an , n∈N* . 設(shè)Sn為數(shù)列{bn}的前n項(xiàng)和,已知b1≠0,2bn﹣b1=S1Sn , n∈N*(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=bnlog3an , 求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在
上的函數(shù)
滿足:函數(shù)
的圖象關(guān)于直線
對稱,且當(dāng)
時(shí)
是函數(shù)
的導(dǎo)函數(shù))成立.若
,則
的大小關(guān)系是
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}為等差數(shù)列,Sn是其前n項(xiàng)和,已知S7=7,S15=75,Tn為數(shù)列{
}的前n項(xiàng)和,
(1)求a1和d;
(2)求Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,
.
(Ⅰ)若
是
的必要條件,求實(shí)數(shù)
的取值范圍;
(Ⅱ)若
,“
或
”為真命題,“
且
”為假命題,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為菱形,PA⊥底面ABCD,
,PA=2,E是PC上的一點(diǎn),PE=2EC.
(Ⅰ)證明:PC⊥平面BED;
(Ⅱ)設(shè)二面角A﹣PB﹣C為90°,求PD與平面PBC所成角的大小.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的左頂點(diǎn)為
,右焦點(diǎn)為
,過點(diǎn)
且斜率為1的直線交橢圓
于另一點(diǎn)
,交
軸于點(diǎn)
,
.
![]()
(1)求橢圓
的方程;
(2)過點(diǎn)
作直線
與橢圓
交于
兩點(diǎn),連接
(
為坐標(biāo)原點(diǎn))并延長交橢圓
于點(diǎn)
,求
面積的最大值及取最大值時(shí)直線
的方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com