【題目】已知函數(shù)
,且定義域?yàn)?/span>
.
(1)求關(guān)于
的方程
在
上的解;
(2)若
在區(qū)間
上單調(diào)減函數(shù),求實(shí)數(shù)
的取值范圍;
(3)若關(guān)于
的方程
在
上有兩個(gè)不同的實(shí)根,求實(shí)數(shù)
的取值范圍.
【答案】(1)
;(2)
;(3)![]()
【解析】分析:(1)由題意得
,討論
和
兩種情況去絕對值解方程即可;
(2)由
,函數(shù)單減則有
,從而得解;
(3)討論
和
下解方程即可.
詳解:(1)令
,即有
.
當(dāng)
時(shí),方程即為
,方程無解;
當(dāng)
時(shí),方程即為
,解得
(負(fù)值舍去).
綜上,方程的解為
.
(2)
,
由
在
上單調(diào)遞減,則
,
解得
,所以實(shí)數(shù)
的取值范圍是
.
(3)當(dāng)
時(shí),
, ①
當(dāng)
時(shí),
, ②
若
,則①無解,②的解為
,故
不成立;
若
,則①的解為
.
(Ⅰ)當(dāng)
,即
時(shí),中
,
則一個(gè)根在
內(nèi),另一根不在
內(nèi),設(shè)
,
因?yàn)?/span>
,所以
,解得
,
又
,則此時(shí)
,
(Ⅱ)當(dāng)
,即
或
時(shí),②在
內(nèi)有不同兩根,
由
,知②必有負(fù)數(shù)根,所以不成立,
綜上
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高二學(xué)生小嚴(yán)利用暑假參加社會(huì)實(shí)踐,為了幫助貿(mào)易公司的購物網(wǎng)站優(yōu)化今年國慶節(jié)期間的營銷策略,他對去年10月1日當(dāng)天在該網(wǎng)站消費(fèi)且消費(fèi)金額不超過1000元的1000名(女性800名,男性200名)網(wǎng)購者,根據(jù)性別按分層抽樣的方法抽取100名進(jìn)行分析,得到如下統(tǒng)計(jì)圖表(消費(fèi)金額單位:元):
女性消費(fèi)情況:
消費(fèi)金額 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000) |
人數(shù) | 5 | 10 | 15 |
|
|
男性消費(fèi)情況:
消費(fèi)金額 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000) |
人數(shù) | 2 | 3 | 10 |
| 2 |
(1)現(xiàn)從抽取的100名且消費(fèi)金額在[800,1000](單位:元)的網(wǎng)購者中隨機(jī)選出兩名發(fā)放網(wǎng)購紅包,求選出的這兩名網(wǎng)購者恰好是一男一女的概率;
(2)若消費(fèi)金額不低于600元的網(wǎng)購者為“網(wǎng)購達(dá)人”,低于600元的網(wǎng)購者為“非網(wǎng)購達(dá)人”,根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫下面
列聯(lián)表,并回答能否在犯錯(cuò)誤的概率不超過0.010的前提下認(rèn)為“是否為‘網(wǎng)購達(dá)人’與性別有關(guān)?”
女性 | 男性 | 總計(jì) | |
網(wǎng)購達(dá)人 | |||
非網(wǎng)購達(dá)人 | |||
總計(jì) |
附:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(
,其中
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取16個(gè)零件,并測量其尺寸(單位:
).根據(jù)長期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布
.
(1)假設(shè)生產(chǎn)狀態(tài)正常,記
表示一天內(nèi)抽取的16個(gè)零件中其尺寸在
之外的零件數(shù),求
及
的數(shù)學(xué)期望;
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在
之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查.
(ⅰ)試說明上述監(jiān)控生產(chǎn)過程方法的合理性;
(ⅱ)下面是檢驗(yàn)員在一天內(nèi)抽取的16個(gè)零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
經(jīng)計(jì)算得
,其中
為
抽取的第
個(gè)零件的尺寸,
.
用樣本平均數(shù)
作為
的估計(jì)值
,用樣本標(biāo)準(zhǔn)差
作為
的估計(jì)值
,利用估計(jì)值判斷是否需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查?剔除
之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(jì)
和
(精確到0.01).
附:若隨機(jī)變量
服從正態(tài)分布
,則
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=x﹣aex(a∈R),x∈R,已知函數(shù)y=f(x)有兩個(gè)零點(diǎn)x1 , x2 , 且x1<x2 .
(1)求a的取值范圍;
(2)證明:
隨著a的減小而增大;
(3)證明x1+x2隨著a的減小而增大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
, 函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間和最小值;
(2)討論
與
的大小關(guān)系;
(3)求
的取值范圍,使得
對任意的
都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中混裝著9個(gè)大小相同的球(編號不同),其中5只白球,4只紅球,為了把紅球與白球區(qū)分開來,采取逐只抽取檢查,若恰好經(jīng)過5次抽取檢查,正好把所有白球和紅球區(qū)分出來了,則這樣的抽取方式共有__________種(用數(shù)字作答) .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F為拋物線y2=x的焦點(diǎn),點(diǎn)A,B在該拋物線上且位于x軸的兩側(cè),
=2(其中O為坐標(biāo)原點(diǎn)),則△ABO與△AFO面積之和的最小值是( )
A.2
B.3
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次
函數(shù),分別從集合
和
中隨機(jī)取一個(gè)數(shù)
和
得到數(shù)對
.
(1)若
,
,求函數(shù)
有零點(diǎn)的概率;
(2)若
,
,求函數(shù)
在區(qū)間
上是增函數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對一批產(chǎn)品的長度(單位:毫米)進(jìn)行抽樣檢測,如圖為檢測結(jié)果的頻率分布直方圖.根據(jù)標(biāo)準(zhǔn),產(chǎn)品長度在區(qū)間[20,25)上為一等品,在區(qū)間[15,20)和[25,30)上為二等品,在區(qū)間[10,15)和[30,35]上為三等品.用頻率估計(jì)概率,現(xiàn)從該批產(chǎn)品中隨機(jī)抽取1件,則其為二等品的概率是( ) ![]()
A.0.09
B.0.20
C.0.25
D.0.45
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com