【題目】設(shè)實數(shù)x,y滿足不等式組
,(2,1)是目標(biāo)函數(shù)z=﹣ax+y取最大值的唯一最優(yōu)解,則實數(shù)a的取值范圍是( )
A.(0,1)
B.(0,1]
C.(﹣∞,﹣2)
D.(﹣∞,﹣2]
【答案】C
【解析】解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分ABC).
則A(1,0),B(2,1),C(0,5)
由z=y﹣ax得y=ax+z,即直線的截距最大,z也最大.
平移直線y=ax+z,則直線的截距最大時,z也最大,
當(dāng)a=0時,y=z在C的截距最大,此時不滿足條件,
當(dāng)a>0時,直線y=ax+z,在C處的截距最大,此時不滿足條件.
當(dāng)a<0時,直線y=ax+z,要使,(2,1)是目標(biāo)函數(shù)z=﹣ax+y取最大值的唯一最優(yōu)解,
則y=ax+z在B處的截距最大,此時滿足目標(biāo)函數(shù)的斜率a小于直線BC的斜率﹣2,
即a<﹣2,
故選:C.![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線
(
)的焦點為
,已知點
,
為拋物線上的兩個動點,且滿足
.過弦
的中點
作拋物線準(zhǔn)線的垂線
,垂足為
,則
的最大值為__________.
【答案】1
【解析】設(shè)
,在三角形ABF中,用余弦定理得到
,
故最大值為1.
故答案為:1.
點睛:本題主要考查了拋物線的簡單性質(zhì).解題的關(guān)鍵是利用了拋物線的定義。一般和拋物線有關(guān)的小題,很多時可以應(yīng)用結(jié)論來處理的;平時練習(xí)時應(yīng)多注意拋物線的結(jié)論的總結(jié)和應(yīng)用。尤其和焦半徑聯(lián)系的題目,一般都和定義有關(guān),實現(xiàn)點點距和點線距的轉(zhuǎn)化。
【題型】填空題
【結(jié)束】
17
【題目】設(shè)
的內(nèi)角
,
,
所對的邊分別為
,
,
,且
,
.
(1)當(dāng)
時,求
的值;
(2)當(dāng)
的面積為
時,求
的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
為奇函數(shù),
為偶函數(shù),且
.
(Ⅰ)求函數(shù)
及
的解析式;
(Ⅱ)用函數(shù)單調(diào)性的定義證明:函數(shù)
在
上是減函數(shù);
(Ⅲ)若關(guān)于
的方程
有解,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點.
![]()
(Ⅰ)若PA=PD,求證:平面PQB⊥平面PAD;
(Ⅱ)點M在線段PC上,PM=tPC,試確定實數(shù)t的值,使PA∥平面MQB;
(Ⅲ)在(Ⅱ)的條件下,若平面PAD⊥平面ABCD,且PA=PD=AD=2,求二面角M-BQ-C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
(a>b>0)的焦點在圓x2+y2=3上,且離心率為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過原點O的直線l與橢圓C交于A,B兩點,F為右焦點,若△FAB為直角三角形,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某運輸公司有7輛可載
的
型卡車與4輛可載
的
型卡車,有9名駕駛員,建筑某段高速公路中,此公司承包了每天至少搬運
瀝青的任務(wù),已知每輛卡車每天往返的次數(shù)為
型車8次,
型車6次,每輛卡車每天往返的成本費為
型車160元,
型車252元,每天派出
型車和
型車各多少輛,公司所花的成本費最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AC⊥AB,AD⊥DC,∠DAC=60°,PA=AC=2,AB=1. ![]()
(1)求二面角A﹣PB﹣C的余弦值.
(2)在線段CP上是否存在一點E,使得DE⊥PB,若存在,求線段CE的長度,不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)雙曲線C的中心為點O,若有且只有一對相交于點O,所成的角為60°的直線A1B1和A2B2,使| A1B1|=| A2B2|,其中A1,B1和A2,B2分別是這對直線與雙曲線C的交點,則該雙曲線的離心率的取值范圍是( )
A. (
,2] B. [
,2) C. (
,+
) D. [
,+
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的一個焦點
與拋物線
的焦點重合,且截拋物線的準(zhǔn)線所得弦長為
.
(1)求該橢圓
的方程;
(2)若過點
的直線
與橢圓
相交于
,
兩點,且點
恰為弦
的中點,求直線
的方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com