【題目】已知
,函數(shù)
的最小值為1.
(1)求
的值;
(2)若
,求實數(shù)
的最大值.
【答案】(1)
(2)![]()
【解析】【試題分析】(1)運用絕對值的三角不等式
或運用絕對值的定義將其化歸為分段函數(shù)的最值問題來處理,求解時借助分段函數(shù)的單調(diào)性可知
在
上單調(diào)遞減,
在
上單調(diào)遞增,從而探求出
在
處取最小值;(2)先將不等式中的參數(shù)
分離出來得到
,再運用基本不等式或柯西不等式求
最值:
(1)法一:
,
∵
且
,
∴
,當(dāng)
時取等號,即
的最小值為
,
∴
;
法二:∵
, ∴
,
顯然
在
上單調(diào)遞減,
在
上單調(diào)遞增,
∴
的最小值為
, ∴
;
(2)法一:∵
恒成立,∴
恒成立,
,
當(dāng)
時,
取得最小值
, ∴
,即實數(shù)
的最大值為
;
法二:∵
恒成立, ∴
恒成立,
恒成立,
, ∴
,即實數(shù)
的最大值為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高職院校進行自主招生文化素質(zhì)考試,考試內(nèi)容為語文、數(shù)學(xué)、英語三科,總分為200分.現(xiàn)從上線的考生中隨機抽取20人,將其成績用莖葉圖記錄如下:
男 | 女 | |||||||||||
15 | 6 | |||||||||||
5 | 4 | 16 | 3 | 5 | 8 | |||||||
8 | 2 | 17 | 2 | 3 | 6 | 8 | 8 | 8 | ||||
6 | 5 | 18 | 5 | 7 | ||||||||
19 | 2 | 3 | ||||||||||
(Ⅰ)計算上線考生中抽取的男生成績的方差
;(結(jié)果精確到小數(shù)點后一位)
(Ⅱ)從上述莖葉圖180分以上的考生中任選2人作為考生代表出席座談會,求所選考生恰為一男一女的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】六個面都是平行四邊形的四棱柱稱為平行六面體.已知在平行四邊形ABCD中(如圖1),有AC2+BD2=2(AB2+AD2),則在平行六面體ABCD﹣A1B1C1D1中(如圖2),AC12+BD12+CA12+DB12等于( ) ![]()
A.2(AB2+AD2+AA12)
B.3(AB2+AD2+AA12)
C.4(AB2+AD2+AA12)
D.4(AB2+AD2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點P(x,y)滿足方程xy=1(x>0).
(Ⅰ)求動點P到直線l:x+2y﹣
=0距離的最小值;
(Ⅱ)設(shè)定點A(a,a),若點P,A之間的最短距離為2
,求滿足條件的實數(shù)a的取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px過點P(1,1).過點(0,
)作直線l與拋物線C交于不同的兩點M,N,過點M作x軸的垂線分別與直線OP、ON交于點A,B,其中O為原點.
(Ⅰ)求拋物線C的方程,并求其焦點坐標(biāo)和準(zhǔn)線方程;
(Ⅱ)求證:A為線段BM的中點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,DE∥BC,BC=2DE,CA⊥CB,CA⊥CD,CB⊥CD,F(xiàn)、G分別是AC、BC中點. ![]()
(1)求證:平面DFG∥平面ABE;
(2)若AC=2BC=2CD=4,求二面角E﹣AB﹣C的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“一帶一路”的建設(shè)中,中石化集團獲得了某地深海油田區(qū)塊的開采權(quán),集團在該地區(qū)隨機初步勘探了幾口井,取得了地質(zhì)資料.進入全面勘探時期后,集團按網(wǎng)絡(luò)點來布置井位進行全面勘探.由于勘探一口井的費用很高,如果新設(shè)計的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費用.勘探初期數(shù)據(jù)資料下表:
井號I | 1 | 2 | 3 | 4 | 5 | 6 |
坐標(biāo) |
|
|
|
|
|
|
鉆探深度 | 2 | 4 | 5 | 6 | 8 | 10 |
出油量 | 40 | 70 | 110 | 90 | 160 | 205 |
(1)在散點圖中
號舊井位置大致分布在一條直線附近,借助前5組數(shù)據(jù)求得回歸線方程為
,求
,并估計
的預(yù)報值;
(2)現(xiàn)準(zhǔn)備勘探新井
,若通過1、3、5、7號井計算出的
的值(
精確到0.01)相比于(1)中
的值之差(即:
)不超過10%,則使用位置最接近的已有舊井
,否則在新位置打井,請判斷可否使用舊井?(參考公式和計算結(jié)果:
)
(3)設(shè)出油量與鉆探深度的比值
不低于20的勘探井稱為優(yōu)質(zhì)井,在原有井號
的井中任意勘探3口井,求恰好2口是優(yōu)質(zhì)井的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左、右焦點分別為
,橢圓
過點
,直線
交
軸于
,且
,
為坐標(biāo)原點.
(1)求橢圓
的方程;
(2)設(shè)
是橢圓
的上頂點,過點
分別作直線
交橢圓
于
兩點,設(shè)這兩條直線的斜率分別為
,且
,證明:直線
過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足:a1=
,a2=
,2an=an+1+an﹣1(n≥2,n∈N),數(shù)列{bn}滿足:b1<0,3bn﹣bn﹣1=n(n≥2,n∈R),數(shù)列{bn}的前n項和為Sn .
(1)求證:數(shù)列{bn﹣an}為等比數(shù)列;
(2)求證:數(shù)列{bn}為遞增數(shù)列;
(3)若當(dāng)且僅當(dāng)n=3時,Sn取得最小值,求b1的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com