【題目】如圖所示,已知
平面
,
,
分別是
,
的中點(diǎn),
.
![]()
(1)求證:
平面
;
(2)求證:平面
平面
;
(3)若
,
,求直線
與平面
所成的角.
【答案】(1)證明見(jiàn)解析(2)證明見(jiàn)解析(3)![]()
【解析】
(1)根據(jù)中位線定理,可得
,即可由線面平行判定定理證明
平面
;
(2)根據(jù)題意可得
,而又因?yàn)?/span>
,所以
平面
,即可由平面與平面垂直的判定定理證明平面
平面
;
(3)由題意可知
為直線
與平面
所成的角,根據(jù)線段關(guān)系求得
,即可求得直線
與平面
所成的角大小.
(1)因?yàn)?/span>
,
分別是
,
的中點(diǎn),
所以
.
又
平面
且
平面
,
所以
平面
.
(2)因?yàn)?/span>
平面
,
平面
,
所以
.
又
且
,
所以
平面
.
又
平面
,
所以平面
平面
.
(3)因?yàn)?/span>
平面
,所以
為直線
與平面
所成的角.
在直角
中,
,
,
所以
.
所以
.
故直線
與平面
所成的角為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)點(diǎn)
的直線
與橢圓
:
交于不同的兩點(diǎn)
,其中
,
為坐標(biāo)原點(diǎn).
(1)若
,求
的面積;
(2)在
軸上是否存在定點(diǎn)
,使得直線
與
的斜率互為相反數(shù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)甲、乙兩地相距400千米,汽車從甲地勻速行駛到乙地,速度不得超過(guò)100千米/小時(shí),已知該汽車每小時(shí)的運(yùn)輸成本P(元)關(guān)于速度v(千米/小時(shí))的函數(shù)關(guān)系是
.
(1)求全程運(yùn)輸成本Q(元)關(guān)于速度v的函數(shù)關(guān)系式;
(2)為使全程運(yùn)輸成本最少,汽車應(yīng)以多大速度行駛?并求此時(shí)運(yùn)輸成本的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年時(shí)紅軍長(zhǎng)征勝利80周年,某市電視臺(tái)舉辦紀(jì)念紅軍長(zhǎng)征勝利80周年知識(shí)問(wèn)答,宣傳長(zhǎng)征精神.首先在甲、乙、丙、丁四個(gè)不同的公園進(jìn)行支持簽名活動(dòng).
公園 | 甲 | 乙 | 丙 | 丁 |
獲得簽名人數(shù) | 45 | 60 | 30 | 15 |
然后在各公園簽名的人中按分層抽樣的方式抽取10名幸運(yùn)之星回答問(wèn)題,從10個(gè)關(guān)于長(zhǎng)征的問(wèn)題中隨機(jī)抽取4個(gè)問(wèn)題讓幸運(yùn)之星回答,全部答對(duì)的幸運(yùn)之星獲得一份紀(jì)念品.
(Ⅰ)求此活動(dòng)中各公園幸運(yùn)之星的人數(shù);
(Ⅱ)若乙公園中每位幸運(yùn)之星對(duì)每個(gè)問(wèn)題答對(duì)的概率均為
,求恰好2位幸運(yùn)之星獲得紀(jì)念品的概率;
(Ⅲ)若幸運(yùn)之星小李對(duì)其中8個(gè)問(wèn)題能答對(duì),而另外2個(gè)問(wèn)題答不對(duì),記小李答對(duì)的問(wèn)題數(shù)為
,求
的分布列及數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系
的原點(diǎn),極軸為
軸的正半軸,兩種坐標(biāo)系中的長(zhǎng)度單位相同,圓
的直角坐標(biāo)方程為
,直線
的參數(shù)方程為
(
為參數(shù)),射線
的極坐標(biāo)方程為
.
(1)求圓
和直線
的極坐標(biāo)方程;
(2)已知射線
與圓
的交點(diǎn)為
,與直線
的交點(diǎn)為
,求線段
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
的定義域是A,值域是
;
的定義域是C,值域是
,且實(shí)數(shù)
滿足
.下列命題中,正確的有( )
A.如果對(duì)任意
,存在
,使得
,那么
;
B.如果對(duì)任意
,任意
,使得
,那么
;
C.如果存在
,存在
,使得
,那么
;
D.如果存在
,任意
,使得
,那么
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)擬用10萬(wàn)元投資甲、乙兩種商品.已知各投入
萬(wàn)元,甲、乙兩種商品分別可獲得
萬(wàn)元的利潤(rùn),利潤(rùn)曲線
,
,如圖所示.
![]()
(1)求函數(shù)
的解析式;
(2)應(yīng)怎樣分配投資資金,才能使投資獲得的利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)A是圓O:x2+y2=16上的任意一點(diǎn),l是過(guò)點(diǎn)A且與x軸垂直的直線,B是直線l與x軸的交點(diǎn),點(diǎn)Q在直線l上,且滿足4|BQ|=3|BA|.當(dāng)點(diǎn)A在圓O上運(yùn)動(dòng)時(shí),記點(diǎn)Q的軌跡為曲線C.
(1)求曲線C的方程;
(2)已知直線y=kx﹣2(k≠0)與曲線C交于M,N兩點(diǎn),點(diǎn)M關(guān)于y軸的對(duì)稱點(diǎn)為M′,設(shè)P(0,﹣2),證明:直線M′N過(guò)定點(diǎn),并求△PM′N面積的最大值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com