如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,
,M是線段AE上的動點(diǎn).
(1)試確定點(diǎn)M的位置,使AC∥平面DMF,并說明理由;
(2)在(1)的條件下,求平面MDF將幾何體ADE-BCF分成的兩部分的體積之比.![]()
(1)詳見解析;(2)1:4.
解析試題分析:(1)要使得AC∥平面DMF,需要使得AC平行平面DMF內(nèi)的一條直線.為了找這條直線,需要作一個過AC而與平面DMF相交的平面.為此,連結(jié)CE,交DF于N,連結(jié)MN,這樣只要AC∥MN即可.因為N為線段DF的中點(diǎn),所以只需M是線段AE的中點(diǎn)即可.![]()
(2)一般地,求不規(guī)則的幾何體的體積,可將其割為規(guī)則的幾何體或補(bǔ)為規(guī)則的幾何體.在本題中,可將幾何體ADE-BCF補(bǔ)成三棱柱ADE-B¢CF,如圖.這樣利用柱體和錐體的體積公式即可得其體積之比.![]()
(1)當(dāng)M是線段AE的中點(diǎn)時,AC∥平面DMF.
證明如下:
連結(jié)CE,交DF于N,連結(jié)MN,
由于M、N分別是AE、CE的中點(diǎn),所以MN∥AC,
由于MN
平面DMF,又AC
平面DMF,
所以AC∥平面DMF. 4分
(2)如圖,將幾何體ADE-BCF補(bǔ)成三棱柱ADE-B¢CF,![]()
三棱柱ADE-B¢CF的體積為
,
則幾何體ADE-BCF的體積
=
.
三棱錐F-DEM的體積V三棱錐M-DEF=
,
故兩部分的體積之比為
(答14,4,41均可). 12分
考點(diǎn):1、空間線面關(guān)系;2、幾何體的體積.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,以BD的中點(diǎn)O為球心、BD為直徑的球面交PD于點(diǎn)M.
(1)求證:平面ABM
平面PCD;
(2)求三棱錐M-ABD的體積.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O為底面中心, A1O⊥平面ABCD,
.![]()
(1)證明: A1BD // 平面CD1B1;
(2)求三棱柱ABD-A1B1D1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,AB是圓O的直徑,點(diǎn)C是弧AB的中點(diǎn),點(diǎn)V是圓O所在平面外一點(diǎn),
是AC的中點(diǎn),已知
,
.
(1)求證:AC⊥平面VOD;
(2)求三棱錐
的體積.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在體積為
的正三棱錐
中,
長為
,
為棱
的中點(diǎn),求![]()
(1)異面直線
與
所成角的大小(結(jié)果用反三角函數(shù)值表示);
(2)正三棱錐
的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,AC=BC,點(diǎn)D是AB的中點(diǎn).![]()
(1)求證:BC1∥平面CA1D;
(2)求證:平面CA1D⊥平面AA1B1B;
(3)若底面ABC為邊長為2的正三角形,BB1=
求三棱錐B1-A1DC的體積.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com