【題目】(1)某圓錐的側面展開圖為圓心角為
,面積為
的扇形,求該圓錐的表面積和體積.
(2)已知直三棱柱
的底面是邊長為
的正三角形,且該三棱柱的外接球的表面積為
,求該三棱柱的體積.
【答案】(1)
; (2)
.
【解析】
(1)設圓錐的底面半徑、母線長分別為
,利用扇形的面積公式求得
,利用圓錐的表面積和體積公式,即可求解;
(2)設球半徑為
,上,下底面中心設為
,由題意,外接球心為
的中點,根據三棱柱的外接球的表面積,列出方程,求得棱柱的高,利用體積公式,即可求解.
(1)設圓錐的底面半徑、母線長分別為
,
則
,解得![]()
所以圓錐的高為
,得表面積是
,體積是![]()
(2)設球半徑為R,上,下底面中心設為M,N,由題意,外接球心為MN的中點,
設為O,則OA=R,由4πR2=12π,得R=OA=
,又易得AM=
,
由勾股定理可知,OM=1,所以MN=2,即棱柱的高h=2,
所以該三棱柱的體積為
.
科目:高中數學 來源: 題型:
【題目】2013年1月,北京經歷了59年來霧霾天氣最多的一個月.據氣象局統計,北京市2013年1月1日至1月30日這30天里有26天出現霧霾天氣,《環境空氣質量指數(AQI)技術規定(試行)》如表1:
表1 空氣質量指數AQI分組表
AQI指數M | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
級別 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | Ⅵ |
狀況 | 優 | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴重污染 |
表2是某氣象觀測點記錄的連續4天里AQI指數M與當天的空氣水平可見度y(km)的情況,表3是某氣象觀測點記錄的北京市2013年1月1日至1月30日的AQI指數頻數分布表.
表2 AQI指數M與當天的空氣水平可見度y(km)的情況
AQI指數M | 900 | 700 | 300 | 100 |
空氣水平可見度y(km) | 0.5 | 3.5 | 6.5 | 9.5 |
表3 北京市2013年1月1日至1月30日AQI指數頻數分布表
AQI指數M | [0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
頻數 | 3 | 6 | 12 | 6 | 3 |
(1)設x=
,根據表2的數據,求出y關于x的線性回歸方程.
(參考公式:
,
.)
(2)小王在北京開了一家洗車店,經小王統計:當AQI指數低于200時,洗車店平均每天虧損約2000元;當AQI指數在200至400時,洗車店平均每天收入約4000元;當AQI指數不低于400時,洗車店平均每天收入約7000元.
①估計小王的洗車店在2013年1月份平均每天的收入;
②從AQI指數在[0,200)和[800,1000]內的這6天中抽取2天,求這2天的收入之和不低于5000元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設O為坐標原點,動點M在橢圓C:
+y2=1上,過M做x軸的垂線,垂足為N,點P滿足
=
.
(Ⅰ)求點P的軌跡方程;
(Ⅱ)設點Q在直線x=﹣3上,且
=1.證明:過點P且垂直于OQ的直線l過C的左焦點F.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有一隧道內設雙行線公路,其截面由一長方形和一拋物線構成,如圖所示.為保證安全,要求行駛車輛頂部(設為平頂)與隧道頂部在豎直方向上高度之差至少要有
米.若行車道總寬度
為
米.
![]()
(1)計算車輛通過隧道時的限制高度;
(2)現有一輛載重汽車寬
米,高
米,試判斷該車能否安全通過隧道?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C1:y=cosx,C2:y=sin(2x+
),則下面結論正確的是( )
A.把C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移
個單位長度,得到曲線C2
B.把C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向左平移
個單位長度,得到曲線C2
C.把C1上各點的橫坐標縮短到原來的
倍,縱坐標不變,再把得到的曲線向右平移
個單位長度,得到曲線C2
D.把C1上各點的橫坐標縮短到原來的
倍,縱坐標不變,再把得到的曲線向右平移
個單位長度,得到曲線C2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓
的離心率為
,過橢圓右焦點
作兩條互相垂直的弦
與
.當直線
斜率為0時,
.
![]()
(1)求橢圓的方程;
(2)求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學名著《算法統宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數是上一層燈數的2倍,則塔的頂層共有燈( )
A.1盞
B.3盞
C.5盞
D.9盞
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com