【題目】已知函數(shù)f(x)=sin(π﹣2x),g(x)=2cos2x,則下列結(jié)論正確的是( )
A.函數(shù)f(x)在區(qū)間[
]上為增函數(shù)
B.函數(shù)y=f(x)+g(x)的最小正周期為2π
C.函數(shù)y=f(x)+g(x)的圖象關(guān)于直線x=
對稱
D.將函數(shù)f(x)的圖象向右平移
個單位,再向上平移1個單位,得到函數(shù)g(x)的圖象
【答案】C
【解析】解:∵f(x)=sin(π﹣2x)=sin2x,y=sinx在[0,
]上單調(diào)遞增,在區(qū)間[
,π]上單調(diào)遞減, ∴f(x)=sin2x在區(qū)間[
]上單調(diào)遞減,故A錯誤;
又g(x)=2cos2x=1+cos2x,
∴y=f(x)+g(x)=cos2x+sin2x+1=
sin(2x+
)+1,
∴其周期T=π,由2x+
=kπ+
(k∈Z)得,x=
+
,k∈Z,當(dāng)k=0時,x=
;
故B錯誤,C正確;
對于D,f(x)=sin2x
f(x﹣
)=sin[2(x﹣
)]=﹣sin2x≠1+cos2x=g(x),
故D錯誤.
綜上所述,只有C正確.
故選C.
【考點精析】本題主要考查了兩角和與差的正弦公式和二倍角的余弦公式的相關(guān)知識點,需要掌握兩角和與差的正弦公式:
;二倍角的余弦公式:
才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,a、b、c分別為∠A、∠B、∠C所對的邊,且
a=2csinA.
(1)確定∠C的大小;
(2)若c=
,求△ABC周長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列向量組中,能作為表示它們所在平面內(nèi)所有向量的一組基底的是( )
A.
=(0,0)
=(1,﹣2)
B.
=(﹣1,2)
=(3,7)
C.
=(3,5)
=(6,10)
D.
=(2,﹣3)
=(
,﹣
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
(1)設(shè)
,試討論
單調(diào)性;
(2)設(shè)
,當(dāng)
時,任意
,存在
,使
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿a1=a,a2=b,3an+2﹣5an+1+2an=0(n≥0,n∈N),求數(shù)列{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體的各面中,面積最大的是( ) ![]()
A.8
B.![]()
C.12
D.16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量
=(ex , lnx+k),
=(1,f(x)),
∥
(k為常數(shù),e是自然對數(shù)的底數(shù)),曲線y=f(x)在點(1,f(1))處的切線與y軸垂直,F(xiàn)(x)=xexf′(x).
(1)求k的值及F(x)的單調(diào)區(qū)間;
(2)已知函數(shù)g(x)=﹣x2+2ax(a為正實數(shù)),若對任意x2∈[0,1],總存在x1∈(0,+∞),使得g(x2)<F(x1),求實數(shù)a的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com