【題目】某小區(qū)為了了解業(yè)主用水情況,該小區(qū)分為一期和二期,入住共達(dá)4000戶,現(xiàn)在通過隨機(jī)抽樣獲得了100戶居民的月均用水量,下圖是調(diào)查結(jié)果的頻數(shù)分布表和頻率分布直方圖.
分組 |
|
|
|
|
|
頻數(shù) | 4 | 8 | 15 | 22 | 25 |
分組 |
|
|
|
| |
頻數(shù) | 14 | 6 | 4 | 2 |
![]()
(1)估計(jì)該小區(qū)月均用水量超過3.8噸約有多少戶;
(2)通過頻率分布直方圖,估計(jì)該小區(qū)居民月均用水量平均值和中位數(shù)?【答案】(1)144;(2)平均數(shù)2.02;中位數(shù)2.02
【解析】
(1)根據(jù)頻率分布表,先得到月均用水量超過3.8噸的頻率,再乘以總用戶即可.
(2)根據(jù)頻率分布直方圖,利用平均值的計(jì)算公式求解,由前四個(gè)小矩形面積為0.49,則中位數(shù)在第五個(gè)小矩形中,面積為
計(jì)算即可.
(1)由題意知:
月均用水量超過3.8噸的頻率約為
,
∴估計(jì)該小區(qū)月均用水量超過3.8噸約為
(戶).
(2)從頻率分布直方圖中得知,
平均值![]()
,
因?yàn)榍八膫(gè)小矩形面積為0.49,設(shè)中位數(shù)為
,
則
,即
,所以中位數(shù)2.02.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】流行性感冒(簡稱流感)是流感病毒引起的急性呼吸道感染,是一種傳染性強(qiáng)、傳播速度快的疾病.其主要通過空氣中的飛沫、人與人之間的接觸或與被污染物品的接觸傳播.流感每年在世界各地均有傳播,在我國北方通常呈冬春季流行,南方有冬春季和夏季兩個(gè)流行高峰.兒童相對(duì)免疫力低,在幼兒園、學(xué)校等人員密集的地方更容易被傳染.某幼兒園將去年春期該園患流感小朋友按照年齡與人數(shù)統(tǒng)計(jì),得到如下數(shù)據(jù):
年齡( |
|
|
|
|
|
患病人數(shù)( |
|
|
|
|
|
(1)求
關(guān)于
的線性回歸方程;
(2)計(jì)算變量
、
的相關(guān)系數(shù)
(計(jì)算結(jié)果精確到
),并回答是否可以認(rèn)為該幼兒園去年春期患流感人數(shù)與年齡負(fù)相關(guān)很強(qiáng)?(若
,則
、
相關(guān)性很強(qiáng);若
,則
、
相關(guān)性一般;若
,則
、
相關(guān)性較弱.)
參考數(shù)據(jù):
.
參考公式:
,
相關(guān)系數(shù)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(其中
為參數(shù),
).在極坐標(biāo)系(以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸非負(fù)半軸為極軸)中,曲線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程和曲線
的直角坐標(biāo)方程;
(2)若曲線
上恰有一個(gè)點(diǎn)到曲線
的距離為1,求曲線
的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)中心在原點(diǎn),焦點(diǎn)在
軸上的橢圓
過點(diǎn)
,且離心率為
.
為
的右焦點(diǎn),
為
上一點(diǎn),
軸,
的半徑為
.
(1)求
和
的方程;
(2)若直線
與
交于
兩點(diǎn),與
交于
兩點(diǎn),其中
在第一象限,是否存在
使
?若存在,求
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,底而
為菱形,且菱形
所在的平面與
所在的平面相互垂直,
,
,
,
.
![]()
(1)求證:
平面
;
(2)求四棱錐
的最長側(cè)棱的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系
中,以
軸為始邊做兩個(gè)銳角
,它們的終邊分別與單位圓相交于A,B兩點(diǎn),已知A,B的橫坐標(biāo)分別為![]()
![]()
(1)求
的值; (2)求
的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
(其中
,
,
)的圖象的兩條相鄰對(duì)稱軸之間的距離為
,且圖象上一個(gè)最低點(diǎn)為
.
(1)求函數(shù)
的解析式;
(2)當(dāng)
時(shí),求函數(shù)
的值域;
(3)若方程
在
上有兩個(gè)不相等的實(shí)數(shù)根
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
為自然對(duì)數(shù)的底數(shù)),其中
.
(Ⅰ)若
,求
的單調(diào)區(qū)間;
(Ⅱ)求
零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
,直線
與
軸交于點(diǎn)
,與曲線
交于兩點(diǎn)
,
.
(1)求曲線
的直角坐標(biāo)方程;
(2)求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com