【題目】已知關于x的方程x2-2mx+4m2-6=0的兩不等根為α,β,試求(α-1)2+(β-1)2的最值.
【答案】最大值為15,無最小值.
【解析】試題分析:根據一元二次方程寫出韋達定理,將原式化簡為兩根和與乘積的形式代入,化簡為關于m的二次函數,由Δ>0求出m的取值范圍,即函數的定義域,根據二次函數的圖象和性質求出最值.
試題解析:
由題可知α+β=2m,αβ=4m2-6,
∴(α-1)2+(β-1)2=α2+β2-2(α+β)+2=(α+β)2-2αβ-2(α+β)+2
=4m2-2(4m2-6)-2·2m+2=-4m2-4m+14=-4(m+
)2+15.
∵Δ=(-2m)2-4(4m2-6)=-12m2+24>0,∴當m=-
時滿足Δ>0.∴原式的最大值為15,無最小值.
點睛:本題考查一元二次方程根與系數的關系.設一元二次方程
的兩根為
,
,當
時,方程有兩個等根,當
時,方程無根, 當
時,方程有兩個不相等的實數根,且根據韋達定理有
,或者根據求根公式可得
.
科目:高中數學 來源: 題型:
【題目】已知集合P={x|a+1≤x≤2a+1},Q={x|1≤2x+5≤15}.
(1)已知a=3,求(RP)∩Q;
(2)若P∪Q=Q,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2017年春節期間,某服裝超市舉辦了一次有獎促銷活動,消費每超過600元(含600元),均可抽獎一次,抽獎方案有兩種,顧客只能選擇其中的一種.
方案一:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,一次性摸出3個球,其中獎規則為:若摸到3個紅球,享受免單優惠;若摸出2個紅球則打6折,若摸出1個紅球,則打7折;若沒摸出紅球,則不打折.
方案二:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.
(1)若兩個顧客均分別消費了600元,且均選擇抽獎方案一,試求兩位顧客均享受免單優惠的概率;
(2)若某顧客消費恰好滿1000元,試從概率的角度比較該顧客選擇哪一種抽獎方案更合算?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學一位高三班主任對本班50名學生學習積極性和對待班級工作的態度進行調查,得到的統計數據如下表所示:
積極參加班級工作 | 不積極參加班級工作 | 合計 | |
學習積極性高 | 18 | 7 | 25 |
學習積極性不高 | 6 | 19 | 25 |
合計 | 24 | 26 | 50 |
(1)如果隨機調查這個班的一名學生,那么抽到不積極參加班級工作且學習積極性不高的學生的概率是多少?
(2)若不積極參加班級工作且學習積極性高的7名學生中有兩名男生,現從中抽取兩名學生參加某項活動,問兩名學生中有1名男生的概率是多少?
(3)學生的學習積極性與對待班極工作的態度是否有關系?請說明理由.
附:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某中學高三文科班學生共有800人參加了數學與地理的水平測試,現從中隨機抽取100人的數學與地理的水平測試成績如下表:
![]()
成績分為優秀、良好、及格三個等級;橫向,縱向分別表示地理成績與數學成績,例如:表中數學成績為良好的共有
.
(Ⅰ)若在該樣本中,數學成績優秀率是30%,求
的值;
(Ⅱ)已知
,求數學成績為優秀的人數比及格的人數少的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了預防流感,某學校對教室用藥熏消毒法進行消毒,已知藥物釋放過程中,室內每立方米空氣中的含藥量y(毫克)與時間t(小時)成正比;藥物釋放完畢后,y與t的函數關系式為
(a為常數),如圖所示.根據圖中提供的信息,回答下列問題:
![]()
(1)從藥物釋放開始,每立方米空氣中的含藥量y(毫克)與時間t(小時)之間的函數關系式為_________;
(2)據測定,當空氣中每立方米的含藥量降低到0.25毫克以下時,學生方可進教室,那么從藥物釋放開始,至少需要經過_________小時后,學生才能回到教室.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】第
屆夏季奧林匹克運動會將于 2016 年 8 月 5 日—21 日在巴西里約熱內盧舉行.下表是近五屆奧運會中國代表團和俄羅斯代表團獲得的金牌數的統計數據( 單位: 枚).
第 | 第 | 第 | 第 | 第 | |
中國 |
|
|
|
|
|
俄羅斯 |
|
|
|
|
|
(1)根據表格中兩組數據完成近五屆奧運會兩國代表團獲得的金牌數的莖葉圖, 并通過莖葉圖比較兩國代表團獲得的金牌數的平均值及分散程度( 不要求計算出具體數值, 給出結論即可);
(2)甲、 乙、 丙三人競猜今年中國代表團和俄羅斯代表團中的哪一個獲得的金牌數多( 假設兩國代表團獲得的金牌數不會相等) , 規定甲、 乙、 丙必須在兩個代表團中選一個, 已知甲、 乙猜中國代表團的概率都為
, 丙猜中國代表團的概率為
, 三人各自猜哪個代表團的結果互不影響.現讓甲、 乙、 丙各猜一次, 設三人中猜中國代表團的人數為
,求
的分布列及數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了研究家用轎車在高速公路上的車速情況,交通部門隨機對50名家用轎車駕駛員進行調查,得到其在高速公路上行駛時的平均車速情況為:在30名男性駕駛員中,平均車速超過
的有20人,不超過
的有10人.在20名女性駕駛員中,平均車速超過
的有5人,不超過
的有15人.
(Ⅰ)完成下面的列聯表,并判斷是否有99.5%的把握認為平均車速超過
的人與性別有關;
平均車速超過
| 平均車速不超過
| 合計 | |
男性駕駛員人數 | |||
女性駕駛員人數 | |||
合計 |
(Ⅱ )以上述數據樣本來估計總體,現從高速公路上行駛的大量家用轎車中隨機抽取3輛,記這3輛車中駕駛員為女性且車速不超過
的車輛數為
,若每次抽取的結果是相互獨立的,求
的分布列和數學期望.
參考公式:
,其中
.
參考數據:
| 0.150 | 0.100 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com