【題目】已知橢圓
:
的上下頂點分別為
,且點
.
分別為橢圓
的左、右焦點,且
.
(Ⅰ)求橢圓
的標準方程;
(Ⅱ)點
是橢圓上異于
,
的任意一點,過點
作
軸于
,
為線段![]()
的中點.直線
與直線
交于點
,
為線段
的中點,
為坐標原點.求
的大小.
科目:高中數學 來源: 題型:
【題目】已知橢圓
:
(
)的左焦點
與拋物線
的焦點重合,直線
與以原點
為圓心,以橢圓的離心率
為半徑的圓相切.
(Ⅰ)求該橢圓
的方程;
(Ⅱ)過點
的直線交橢圓于
,
兩點,線段
的中點為
,
的垂直平分線與
軸和
軸分別交于
,
兩點.記
的面積為
,
的面積為
.問:是否存在直線
,使得
,若存在,求直線
的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設命題p:f(x)=
在區間(1,+∞)上是減函數;命題q;x1x2是方程x2﹣ax﹣2=0的兩個實根,不等式m2+5m﹣3≥|x1﹣x2|對任意實數α∈[﹣1,1]恒成立;若¬p∧q為真,試求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量
,
,且函數
.
(Ⅰ)當函數
在
上的最大值為3時,求
的值;
(Ⅱ)在(Ⅰ)的條件下,若對任意的
,函數
,
的圖像與直線
有且僅有兩個不同的交點,試確定
的值.并求函數
在
上的單調遞減區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于定義域為I的函數y=f(x),如果存在區間[m,n]I,同時滿足:
①f(x)在[m,n]內是單調函數;
②當定義域是[m,n],f(x)值域也是[m,n],則稱[m,n]是函數y=f(x)的“好區間”.
(1)設g(x)=loga(ax﹣2a)+loga(ax﹣3a)(其中a>0且a≠1),求g(x)的定義域并判斷其單調性;
(2)試判斷(1)中的g(x)是否存在“好區間”,并說明理由;
(3)已知函數P(x)=
(t∈R,t≠0)有“好區間”[m,n],當t變化時,求n﹣m 的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小張在淘寶網上開一家商店,他以10元每條的價格購進某品牌積壓圍巾2000條.定價前,小張先搜索了淘寶網上的其它網店,發現:A商店以30元每條的價格銷售,平均每日銷售量為10條;B商店以25元每條的價格銷售,平均每日銷售量為20條.假定這種圍巾的銷售量t(條)是售價x(元)(x∈Z+)的一次函數,且各個商店間的售價、銷售量等方面不會互相影響.
(1)試寫出圍巾銷售每日的毛利潤y(元)關于售價x(元)(x∈Z+)的函數關系式(不必寫出定義域),并幫助小張定價,使得每日的毛利潤最高(每日的毛利潤為每日賣出商品的進貨價與銷售價之間的差價);
(2)考慮到這批圍巾的管理、倉儲等費用為200元/天(只要圍巾沒有售完,均須支付200元/天,管理、倉儲等費用與圍巾數量無關),試問小張應該如何定價,使這批圍巾的總利潤最高(總利潤=總毛利潤﹣總管理、倉儲等費用)?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于R上的可導函數f(x),若a>b>1且有(x﹣1)f′(x)≥0,則必有( )
A.f(a)+f(b)<2f(1)
B.f(a)+f(b)≤2f(1)
C.f(a)+f(b)≥2f(1)
D.f(a)+f(b)>2f(1)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com