已知頂點在原點
,焦點在
軸上的拋物線過點
.
(1)求拋物線的標準方程;
(2)若拋物線與直線
交于
、
兩點,求證:
.
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知
的兩頂點坐標
,
,圓
是
的內切圓,在邊
,
,
上的切點分別為
,
(從圓外一點到圓的兩條切線段長相等),動點
的軌跡為曲線
.![]()
(1)求曲線
的方程;
(2)設直線
與曲線
的另一交點為
,當點
在以線段
為直徑的圓上時,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的中心在原點,焦點在
軸上,離心率為
,長軸長為
,直線
交橢圓于不同的兩點
.
(1)求橢圓的方程;
(2)求
的取值范圍;
(3)若直線
不經過橢圓上的點
,求證:直線
的斜率互為相反數.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在直角坐標系中,
為坐標原點,如果一個橢圓經過點P(3,
),且以點F(2,0)為它的一個焦點.
(1)求此橢圓的標準方程;
(2)在(1)中求過點F(2,0)的弦AB的中點M的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
:
的左、右焦點和短軸的兩個端點構成邊長為2的正方形.![]()
(Ⅰ)求橢圓
的方程;
(Ⅱ)過點
的直線
與橢圓
相交于
,
兩點.點
,記直線
的斜率分別為
,當
最大時,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖已知橢圓的中點在原點,焦點在x軸上,長軸是短軸的2倍且過點
,平行于
的直線
在y軸的截距為
,且交橢圓與
兩點,![]()
(1)求橢圓的方程;(2)求
的取值范圍;(3)求證:直線
、
與x軸圍成一個等腰三角形,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com