【題目】選修4-5:不等式選講
已知函數f(x)=|2x+1|+|2x-a|.
(I)若f(x)的最小值為2,求a的值;
(II)若f(x)≤|2x-4|的解集包含[-2,-1],求a的取值范圍.
【答案】(1)
(2)
【解析】試題分析:(1)由絕對值三角不等式可得函數f(x)的最小值為|a+1|,再解方程|a+1|=2,可得a的值;(2)即x∈[﹣2,﹣1]時,f(x)≤|2x﹣4|恒成立,化簡得|2x﹣a|≤5恒成立,即﹣5+2x≤a≤5+2x恒成立,可得a的取值范圍.
試題解析:解:(1)∵函數f(x)=|2x+1|+|2x﹣a|≥|2x+1﹣(2x﹣a)|=|a+1|,且f(x)的最小值為2,∴|a+1|=2,∴a=1 或a=﹣3.
(2)f(x)≤|2x﹣4|的解集包含[﹣2,﹣1],即x∈[﹣2,﹣1]時,f(x)≤|2x﹣4|恒成立,
即|2x+1|+|2x﹣a|≤|2x﹣4|恒成立,即﹣2x﹣1+|2x﹣a|≤4﹣2x恒成立,
即|2x﹣a|≤5恒成立,即﹣5+a≤2x≤5+a恒成立,即
,
∴﹣7≤a≤1
科目:高中數學 來源: 題型:
【題目】已知在△ABC中,三條邊
所對的角分別為A、B,C,向量
=(
),
=(
),且滿足![]()
=
.
(1)求角C的大小;
(2)若sinA,sinC,sinB成等比數列,且
=﹣8,求邊
的值并求△ABC外接圓的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知極點與直角坐標系的原點重合,極軸與
軸的正半軸重合,圓
的極坐標方程是
,直線
的參數方程是
(
為參數).
(1)若
,
為直線
與
軸的交點,
是圓
上一動點,求
的最大值;
(2)若直線
被圓
截得的弦長為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AB∥DC,AE⊥DC,BE∥AD.M、N分別是AD、BE上的點,且AM=BN,將三角形ADE沿AE折起,則下列說法正確的是 (填上所有正確說法的序號).
![]()
①不論D折至何位置(不在平面ABC內)都有MN∥平面DEC;
②不論D折至何位置都有MN⊥AE;
③不論D折至何位置(不在平面ABC內)都有MN∥AB;
④在折起過程中,一定存在某個位置,使EC⊥AD.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,某班一次數學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,其中,頻率分布直方圖的分組區間分別為
,據此解答如下問題.
![]()
(Ⅰ)求全班人數及分數在
之間的頻率;
(Ⅱ)現從分數在
之間的試卷中任取 3 份分析學生情況,設抽取的試卷分數在
的份數為
,求
的分布列和數學望期.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
,
.
(1)若曲線
在
處的切線的方程為
,求實數
的值;
(2)設
,若對任意兩個不等的正數
,都有
恒成立,求實數
的取值范圍;
(3)若在
上存在一點
,使得
成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市為了鼓勵市民節約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按0.5元/度收費,超過200度但不超過400度的部分按0.8元/度收費,超過400度的部分按1.0元/度收費.
(1)求某戶居民用電費用
(單位:元)關于月用電量
(單位:度)的函數解析式;
(2)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統計分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費用不超過260元的點80%,求
的值;
![]()
(3)在滿足(2)的條件下,估計1月份該市居民用戶平均用電費用(同一組中的數據用該組區間的中點值作代表).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com