已知函數(shù)
.
(Ⅰ)若
,求函數(shù)
的單調(diào)區(qū)間和極值;
(Ⅱ)設(shè)函數(shù)
圖象上任意一點(diǎn)的切線
的斜率為
,當(dāng)
的最小值為1時(shí),求此時(shí)切線
的方程.
(Ⅰ)
的單調(diào)遞增區(qū)間為
,
;單調(diào)遞減區(qū)間為
;
極大值為
;極小值為
; (Ⅱ)切線
的方程為:
.
解析試題分析:(Ⅰ)注意,
的定義域?yàn)椋?img src="http://thumb.zyjl.cn/pic5/tikupic/09/d/1katc2.png" style="vertical-align:middle;" />).將
代入
,求導(dǎo)得:
.由
得
,或
,由
得
,由此得
的單調(diào)遞增區(qū)間為
,
;單調(diào)遞減區(qū)間為
,進(jìn)而可得
極大值為
;極小值為
. (Ⅱ)求導(dǎo),再用重要不等式可得導(dǎo)數(shù)的最小值,即切線斜率的最小值:
,由此得
.由
,即
得
,所以切點(diǎn)為
,由此可得切線的方程.
試題解析:(Ⅰ)
的定義域?yàn)椋?img src="http://thumb.zyjl.cn/pic5/tikupic/09/d/1katc2.png" style="vertical-align:middle;" />)時(shí), 1分
當(dāng)
時(shí),
2分
由
得
,
由
得
,或
,由
得
, 3分
∴
的單調(diào)遞增區(qū)間為
,
;單調(diào)遞減區(qū)間為
5分
∴
極大值為
;極小值為
7分
(Ⅱ)由題意知
∴
9分
此時(shí)
,即
,∴
,切點(diǎn)為
, 11分
∴此時(shí)的切線
方程為:
. 13分
考點(diǎn):導(dǎo)數(shù)的應(yīng)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=-
x3+
x2-2x(a∈R).
(1)當(dāng)a=3時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,求實(shí)數(shù)a的取值范圍;
(3)若過(guò)點(diǎn)
可作函數(shù)y=f(x)圖象的三條不同切線,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=ax+ln x,g(x)=ex.
(1)當(dāng)a≤0時(shí),求f(x)的單調(diào)區(qū)間;
(2)若不等式g(x)<
有解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
甲方是一農(nóng)場(chǎng),乙方是一工廠.由于乙方生產(chǎn)需占用甲方的資源,因此甲方有權(quán)向乙方索賠以彌補(bǔ)經(jīng)濟(jì)損失并獲得一定凈收入,在乙方不賠付甲方的情況下,乙方的年利潤(rùn)x(元)與年產(chǎn)量t(噸)滿足函數(shù)關(guān)系x=2 000
.若乙方每生產(chǎn)一噸產(chǎn)品必須賠付甲方S元(以下稱S為賠付價(jià)格).
(1)將乙方的年利潤(rùn)w(元)表示為年產(chǎn)量t(噸)的函數(shù),并求出乙方獲得最大利潤(rùn)的年產(chǎn)量;
(2)甲方每年受乙方生產(chǎn)影響的經(jīng)濟(jì)損失金額y=0.002t2(元),在乙方按照獲得最大利潤(rùn)的產(chǎn)量進(jìn)行生產(chǎn)的前提下,甲方要在索賠中獲得最大凈收入,應(yīng)向乙方要求的賠付價(jià)格S是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
.
(1)求
的單調(diào)區(qū)間;
(2)設(shè)函數(shù)
,若當(dāng)
時(shí),
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(Ⅰ)若曲線
在點(diǎn)
處的切線與直線
平行,求實(shí)數(shù)
的值;
(Ⅱ)若函數(shù)
在
處取得極小值,且
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(Ⅰ)設(shè)
,求
的最小值;
(Ⅱ)如何上下平移
的圖象,使得
的圖象有公共點(diǎn)且在公共點(diǎn)處切線相同.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
,函數(shù)
.
(Ⅰ)當(dāng)
時(shí),求
的最小值;
(Ⅱ)若
在區(qū)間
上是單調(diào)函數(shù),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
為實(shí)常數(shù),函數(shù)
.
(1)討論函數(shù)
的單調(diào)性;
(2)若函數(shù)
有兩個(gè)不同的零點(diǎn)
;
(Ⅰ)求實(shí)數(shù)
的取值范圍;
(Ⅱ)求證:
且
.(注:
為自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com