已知函數(shù)![]()
(1)當(dāng)
時,求函數(shù)
在
上的極值;
(2)證明:當(dāng)
時,
;
(3)證明:
.
(1)
;(2)證明過程詳見解析;(3)證明過程詳見解析.
解析試題分析:本題主要考查導(dǎo)數(shù)的運(yùn)算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值和最值、不等式等基礎(chǔ)知識,考查函數(shù)思想,考查綜合分析和解決問題的能力.第一問,將
代入,得到
解析式,對它求導(dǎo),列出表格,通過單調(diào)性,判斷極值;第二問,證明不等式轉(zhuǎn)化為求函數(shù)
的最小值大于0;第三問,利用第二問的結(jié)論,令
,利用放縮法得到
,再利用對數(shù)的性質(zhì)和裂項相消法求和,得到所證不等式.
試題解析:(1)當(dāng)
時,![]()
1分
變化如下表![]()
![]()
![]()
![]()
![]()
![]()
![]()
+ 0 0 + ![]()
↗ 極大值 ![]()
↘ 極小值 ↗
,
4分
(2)令
則
6分
∴
在
上為增函數(shù)。
8分
9分
(3)由(2)知![]()
10分
令
得,
12分![]()
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
。
(Ⅰ)若
,求函數(shù)
的單調(diào)區(qū)間并比較
與
的大小關(guān)系
(Ⅱ)若函數(shù)
的圖象在點
處的切線的傾斜角為
,對于任意的
,函數(shù)
在區(qū)間
上總不是單調(diào)函數(shù),求
的取值范圍;
(Ⅲ)求證:
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
,其中
.
(1)若
在
處取得極值,求常數(shù)
的值;
(2)設(shè)集合
,
,若
元素中有唯一的整數(shù),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)
在區(qū)間
上是減函數(shù),求實數(shù)
的最小值;
(Ⅲ)若存在
(
是自然對數(shù)的底數(shù))使
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
(1)求函數(shù)
的極值點;
(2)若直線
過點
,并且與曲線
相切,求直線
的方程;
(3)設(shè)函數(shù)
,其中
,求函數(shù)
在
上的最小值(其中
為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(
)
(1)若曲線
在點
處的切線平行于
軸,求
的值;
(2)當(dāng)
時,若直線
與曲線
在
上有公共點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分共12分)已知函數(shù)
,曲線
在點
處切線方程為
。
(Ⅰ)求
的值;
(Ⅱ)討論
的單調(diào)性,并求
的極大值。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com