已知數(shù)列
為等差數(shù)列,數(shù)列
為等比數(shù)列且公比大于1,若
,
,且
恰好是一各項(xiàng)均為正整數(shù)的等比數(shù)列的前三項(xiàng).
(1)求數(shù)列
,
的通項(xiàng)公式;
(2)設(shè)數(shù)列
滿足![]()
,求
.
(1)
,
;(2)
.
解析試題分析:本題主要考查等差數(shù)列與等比數(shù)列的概念、通項(xiàng)公式、前n項(xiàng)和公式、數(shù)列求和等基礎(chǔ)知識(shí),考查思維能力和計(jì)算能力.第一問(wèn),先用等差等比數(shù)列的通項(xiàng)公式將已知條件中出現(xiàn)的所有項(xiàng)都展開(kāi),用
試題解析:(1)設(shè)
的公差為
,
的公比為
且
,則
表示,從
是等比數(shù)列的前三項(xiàng)入手,利用等比中項(xiàng)列表達(dá)式,可解出
和
,寫出2個(gè)數(shù)列的通項(xiàng)公式;第二問(wèn),先將第一問(wèn)的結(jié)果代入,找到
的通項(xiàng)公式,用錯(cuò)位相減法求數(shù)列的和.
,
,
,
,
,
,
則
,由于
與
均為正整數(shù)值,
,
, 4分
解得
,∴
,
. 6分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c0/e/hxd4j.png" style="vertical-align:middle;" />
,把
,
代入得:
. 8分
∴
,
,相減得:![]()
![]()
∴
. 12分
考點(diǎn):1.等差、等比數(shù)列的通項(xiàng)公式;2.錯(cuò)位相減法;3.等比中項(xiàng);4.等比數(shù)列的前n項(xiàng)和公式.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列
滿足:
,
,
(其中
為非零常數(shù),
).
(1)判斷數(shù)列
是不是等比數(shù)列?
(2)求
;
(3)當(dāng)
時(shí),令
,
為數(shù)列
的前
項(xiàng)和,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在等差數(shù)列{an}中,
為其前n項(xiàng)和
,且![]()
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等比數(shù)列
的前
項(xiàng)和
.設(shè)公差不為零的等差數(shù)列
滿足:
,且
成等比.
(Ⅰ) 求
及
;
(Ⅱ) 設(shè)數(shù)列
的前
項(xiàng)和為
.求使
的最小正整數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列
是首項(xiàng)為
,公比
的等比數(shù)列.設(shè)
,
,數(shù)列
滿足
;
(Ⅰ)求證:數(shù)列
成等差數(shù)列;
(Ⅱ)求數(shù)列
的前
項(xiàng)和
;
(Ⅲ)若
對(duì)一切正整數(shù)
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列
滿足![]()
(1)求證:數(shù)列
的奇數(shù)項(xiàng),偶數(shù)項(xiàng)均構(gòu)成等差數(shù)列;
(2)求
的通項(xiàng)公式;
(3)設(shè)
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)
是公比大于1的等比數(shù)列,
為其前
項(xiàng)和已知
,且
,
,
構(gòu)成等差數(shù)列.
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)令
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)
、
為實(shí)數(shù),首項(xiàng)為
,公差為
的等差數(shù)列
的前
項(xiàng)和為
,滿足
,
.
(1)求通項(xiàng)
及
;
(2)設(shè)
是首項(xiàng)為
,公比為
的等比數(shù)列,求數(shù)列
的通項(xiàng)公式及其前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)
,
,Q=
;若將
,lgQ,lgP適當(dāng)排序后可構(gòu)成公差為1的等差數(shù)列
的前三項(xiàng).
(1)試比較M、P、Q的大小;
(2)求
的值及
的通項(xiàng);
(3)記函數(shù)
的圖象在
軸上截得的線段長(zhǎng)為
,
設(shè)![]()
,求
,并證明
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com