已知橢圓
的兩焦點與短軸的一個端點的連線構(gòu)成等腰直角三角形,直線
是拋物線
的一條切線.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點
的動直線L交橢圓C于 A.B兩點.問:是否存在一個定點T,使得以AB為直徑的圓恒過點T ? 若存在,求點T坐標(biāo);若不存在,說明理由.
(Ⅰ)由![]()
因直線
相切,
,∴
,…2分
∵圓
的兩焦點與短軸的一個端點的連線構(gòu)成等腰直角三角
形,∴
………………4分
故所求橢圓方程為
………………5分
(Ⅱ)當(dāng)L與x軸平行時,以AB為直徑的圓的方程:![]()
當(dāng)L與x軸垂直時,以AB為直徑的圓的方程:
由![]()
即兩圓公共點(0,1)因此,所求的點T如果存在,只能是(0,1) ………7分
(ⅰ)當(dāng)直線L斜率不存在時,以AB為直徑的圓過點T(0,1)
(ⅱ)若直線L斜率存在時,可設(shè)直線L: ![]()
由![]()
記點
.
………………9分
![]()
∴TA⊥TB, ………………11分
綜合(ⅰ)(ⅱ),以AB為直徑的圓恒過點T(0,1).
【解析】略
科目:高中數(shù)學(xué) 來源: 題型:
| 1 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年山東省實驗中學(xué)綜合測試?yán)?(本小題滿分13分)已知橢圓
的兩焦點與短軸的一個端點的連線構(gòu)成等腰直角三角形,直線
是拋物線
的一條切線.
(1)求橢圓的方程;
(2)過點
的動直線L交橢圓C于A、B兩點,試問:在坐標(biāo)平面上是否存在一
個定點T,使得以AB為直徑的圓恒過點T?若存在,求出點T的坐標(biāo);若不存在,
請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓
的兩焦點與短軸的一個端點的連線構(gòu)成等腰直角三角形,直線
是拋物線
的一條切線.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點
的動直線L交橢圓C于A、B兩點.問:是否存在一個定點T,使得以AB為直徑的圓恒過點T ? 若存在,求點T坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆福建泉州一中高二第二學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓
的兩焦點與短軸的一個端點連結(jié)成等腰直角三角形,直線
是拋物線
的一條切線。
(1) 求橢圓方程;
(2) 直線
交橢圓
于A、B兩點,若點P滿足
(O為坐標(biāo)原點), 判斷點P是否在橢圓
上,并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省高三下學(xué)期二輪復(fù)習(xí)數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)
已知橢圓
的兩焦點與短軸的一個端點的連線構(gòu)成等腰直角三角形,直線
是拋物線
的一條切線.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點
的動直線L交橢圓C于A.B兩點.問:是否存在一個定點T,使得以AB為直徑的圓恒過點T ? 若存在,求點T坐標(biāo);若不存在,說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com