已知函數(shù)![]()
在
上是增函數(shù)
(1)求實數(shù)
的取值集合![]()
(2)當
取值集合
中的最小值時, 定義數(shù)列
;滿足
且
,
, 設
, 證明:數(shù)列
是等比數(shù)列, 并求數(shù)列
的通項公式.
(3)若
, 數(shù)列
的前
項和為
, 求
.
科目:高中數(shù)學 來源: 題型:解答題
已知
=2,點(
)在函數(shù)
的圖像上,其中
=
.
( 1 ) 證明:數(shù)列
}是等比數(shù)列;
(2)設
,求
及數(shù)列{
}的通項公式;
(3)記
,求數(shù)列{
}的前n項和
,并證明
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列{an}是首項a1=4,公比q≠1的等比數(shù)列,Sn是其前n項和,且
成等差數(shù)列.
(1)求公比q的值;
(2)求Tn=a2+a4+a6+…+a2n的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列{an}滿足S n + a n= 2n +1.
(1)寫出a1,a2,a3, 并推測a n的表達式;
(2)用數(shù)學歸納法證明所得的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
對任意
都有![]()
(Ⅰ)求
和
的值.
(Ⅱ)數(shù)列
滿足:
=
+
,數(shù)列
是等差數(shù)列嗎?請給予證明;
(Ⅲ)令
試比較
與
的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
楊輝是中國南宋末年的一位杰出的數(shù)學家、數(shù)學教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質與組合數(shù)的性質有關,楊輝三角中蘊藏了許多優(yōu)美的規(guī)律。下圖是一個11階楊輝三角:
(1)求第20行中從左到右的第4個數(shù);
(2)若第n行中從左到右第14個數(shù)與第15個數(shù)的比為
,求n的值;
(3)求n階(包括0階)楊輝三角的所有數(shù)的和;
(4)在第3斜列中,前5個數(shù)依次為1,3,6,10,15;第4斜列中,第5個數(shù)為35。顯然,1+3+6+10+15=35。事實上,一般地有這樣的結論:第m斜列中(從右上到左下)前k個數(shù)之和,一定等于第m+1斜列中第k個數(shù)。試用含有m、k
的數(shù)學公式表示上述結論,并給予證明。![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在數(shù)列{an}(n∈N*)中,已知a1=1,a2k=-ak,a2k-1=(-1)k+1ak,k∈N*. 記數(shù)列{an}的前n項和為Sn.
(1)求S5,S7的值;
(2)求證:對任意n∈N*,Sn≥0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知數(shù)列
中,
,數(shù)列
滿足
。
(1)求證:數(shù)列
是等差數(shù)列;
(2)求數(shù)列
中的最大項和最小項,并說明理由。
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com