【題目】在平面直角坐標系中,已知向量
,
,定點
的坐標為
,點
滿足
,曲線
,區域
,曲線
與區域
的交集為兩段分離的曲線,則( )
A.![]()
B.![]()
C.![]()
D.![]()
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x|x﹣a|+2x(a∈R)
(1)當a=4時,解不等式f(x)≥8;
(2)當a∈[0,4]時,求f(x)在區間[3,4]上的最小值;
(3)若存在a∈[0,4],使得關于x的方程f(x)=tf(a)有3個不相等的實數根,求實數t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線y2=﹣x與直線y=k(x+1)相交于A(x1 , y1),B(x2 , y2)兩點,O為坐標原點.
(1)求y1y2的值;
(2)求證:OA⊥OB.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在△ABC中,已知CA=1,CB=2,∠ACB=60°. ![]()
(1)求|
|;
(2)已知點D是AB上一點,滿足
=λ
,點E是邊CB上一點,滿足
=λ
. ①當λ=
時,求
;
②是否存在非零實數λ,使得
⊥
?若存在,求出的λ值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等比數列{an}的公比q>1,a1=1,且a1 , a3 , a2+14成等差數列,數列{bn}滿足a1b1+a2b2+…+anbn=(n﹣1)3n+1(n∈N*).
(1)求數列{an}和{bn}的通項公式;
(2)令cn=(﹣1)n
,求數列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{an}是各項均為正數的等比數列a1+a2=2(
),a3+a4+a5=64
+
+
)
(1)求{an}的通項公式;
(2)設bn=(an+
)2 , 求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知兩矩形ABCD與ADEF所在的平面互相垂直,AB=1,若將△DEF沿直線FD翻折,使得點E落在邊BC上(即點P),則當AD取最小值時,邊AF的長是;此時四面體F﹣ADP的外接球的半徑是 . ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設m,n∈R,若直線(m+1)x+(n+1)y﹣2=0與圓(x﹣1)2+(y﹣1)2=1相切,則m+n的取值范圍是( )
A.[1﹣
,1+
]
B.(﹣∞,1﹣
]∪[1+
,+∞)
C.[2﹣2
,2+2
]
D.(﹣∞,2﹣2
]∪[2+2
,+∞)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com