【題目】已知函數f(x)=ex+ax+b(a,b∈R)在x=ln2處的切線方程為y=x﹣2ln2. (Ⅰ)求函數f(x)的單調區間;
(Ⅱ)若k為差數,當x>0時,(k﹣x)f'(x)<x+1恒成立,求k的最大值(其中f'(x)為f(x)的導函數).
【答案】解:(Ⅰ)f'(x)=ex+a,由已知得f'(ln2)=1,故eln2+a=1,解得a=﹣1. 又f(ln2)=﹣ln2,得eln2﹣ln2+b=﹣ln2,解得b=﹣2,
∴f(x)=ex﹣x﹣2,則f'(x)=ex﹣1,
當x<0時,f'(x)<0;當x>0時,f'(x)>0,
∴f(x)的單調區間遞增區間為(0,+∞),遞減區間為(﹣∞,0);
(Ⅱ)由已知(k﹣x)f'(x)<x+1,及f'(x)=ex﹣1,
整理得
在x>0時恒成立.
令
,
,
當x>0時,ex>0,ex﹣1>0;
由(Ⅰ)知f(x)=ex﹣x﹣2在(0,+∞)上為增函數,
又f(1)=e﹣3<0,f(2)=e2﹣4>0,
∴存在x0∈(1,2)使得
,此時 ![]()
當x∈(0,x0)時,g'(x)<0;當x∈(x0 , +∞)時,g'(x)>0
∴
.
故整數k的最大值為2
【解析】(Ⅰ)求出原函數的導函數,由f'(ln2)=1求導a值,再由f(ln2)=﹣ln2求得b值,代入原函數的導函數,再由導函數的符號與原函數單調性間的關系確定原函數的單調區間;(Ⅱ)把當x>0時,(k﹣x)f'(x)<x+1恒成立,轉化為
在x>0時恒成立.令
,利用導數求其最小值得答案.
【考點精析】解答此題的關鍵在于理解利用導數研究函數的單調性的相關知識,掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區間
內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減,以及對函數的最大(小)值與導數的理解,了解求函數
在
上的最大值與最小值的步驟:(1)求函數
在
內的極值;(2)將函數
的各極值與端點處的函數值
,
比較,其中最大的是一個最大值,最小的是最小值.
科目:高中數學 來源: 題型:
【題目】某樂隊參加一戶外音樂節,準備從3首原創新曲和5首經典歌曲中隨機選擇4首進行演唱.
(1)求該樂隊至少演唱1首原創新曲的概率;
(2)假定演唱一首原創新曲觀眾與樂隊的互動指數為a(a為常數),演唱一首經典歌曲觀眾與樂隊的互動指數為2a.求觀眾與樂隊的互動指數之和
的概率分布及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1的參數方程為
(θ為參數),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C2的極坐標方程是ρsin(θ+
)=2
(Ⅰ)直接寫出C1的普通方程和極坐標方程,直接寫出C2的普通方程;
(Ⅱ)點A在C1上,點B在C2上,求|AB|的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,平面PAC⊥底面ABCD,BC=CD=
AC=2,∠ACB=∠ACD=
. ![]()
(1)證明:AP⊥BD;
(2)若AP=
,AP與BC所成角的余弦值為
,求二面角A﹣BP﹣C的余弦值..
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如果定義在R上的函數f(x)滿足:對于任意x1≠x2 , 都有xlf(xl)+x2f(x2)≥xlf(x2)+x2f(xl),則稱f(x)為“H函數”,給出下列函數: ①y=﹣x3+x+l;
②y=3x﹣2(sinx﹣cosx);
③y=l﹣ex;
④f(x)=
;
⑤y=
其中“H函數”的個數有( )
A.3個
B.2個
C.l個
D.0個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為ρsin2θ=2acosθ(a>0),直線l的參數方程為
(t為參數),直線l與曲線C相交于A,B兩點.
(1)寫出曲線C的直角坐標方程和直線l的普通方程;
(2)若|AB|=2
,求a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=[ax2﹣(2a+1)x+a+2]ex(a∈R).
(1)當a≥0時,討論函數f(x)的單調性;
(2)設g(x)=
,當a=1時,若對任意x1∈(0,2),存在x2∈(1,2),使f(x1)≥g(x2),求實數b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x+2|﹣2|x﹣1|. (Ⅰ)求不等式f(x)≥﹣2的解集M;
(Ⅱ)對任意x∈[a,+∞),都有f(x)≤x﹣a成立,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com