已知函數(shù)
.
(1)若函數(shù)
在區(qū)間
上有極值,求實(shí)數(shù)
的取值范圍;
(2)若關(guān)于
的方程
有實(shí)數(shù)解,求實(shí)數(shù)
的取值范圍;
(3)當(dāng)
,
時(shí),求證:
.
(1)
(2)
(3)根據(jù)數(shù)列的求和來放縮法得到不等式的證明關(guān)鍵是對于
的運(yùn)用。
解析試題分析:解:(1)
,
當(dāng)
時(shí),
;當(dāng)
時(shí),
;
函數(shù)
在區(qū)間(0,1)上為增函數(shù);在區(qū)間
為減函數(shù) 3分
當(dāng)
時(shí),函數(shù)
取得極大值,而函數(shù)
在區(qū)間
有極值.![]()
,解得
. 5分
(2)由(1)得
的極大值為
,令
,所以當(dāng)
時(shí),函數(shù)
取得最小值
,又因?yàn)榉匠?img src="http://thumb.zyjl.cn/pic5/tikupic/a7/2/ebdsb1.png" style="vertical-align:middle;" />有實(shí)數(shù)解,那么
,即
,所以實(shí)數(shù)
的取值范圍是:
. 10分
(另解:
,
,
令![]()
,所以![]()
![]()
,當(dāng)
時(shí),![]()
當(dāng)
時(shí),
;當(dāng)
時(shí),![]()
當(dāng)
時(shí),函數(shù)
取得極大值為![]()
當(dāng)方程
有實(shí)數(shù)解時(shí),
.)
(3)
函數(shù)
在區(qū)間
為減函數(shù),而
,![]()
,即
![]()
12分
即
,
而
,
結(jié)論成立. 16分
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評:根據(jù)導(dǎo)數(shù)的符號判定函數(shù)的單調(diào)性,是解決該試題的關(guān)鍵,同時(shí)能結(jié)合函數(shù)與方程的思想求解方程的根,屬于中檔題。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)滿足以下兩個(gè)條件的有窮數(shù)列
為![]()
階“期待數(shù)列”:
①
;②
.
(1)若等比數(shù)列
為
(
)階“期待數(shù)列”,求公比
;
(2)若一個(gè)等差數(shù)列
既是
(
)階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項(xiàng)公式;
(3)記
階“期待數(shù)列”
的前
項(xiàng)和為
:
(ⅰ)求證:
;
(ⅱ)若存在
使
,試問數(shù)列
能否為
階“期待數(shù)列”?若能,求出所有這樣的數(shù)列;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
為正整數(shù).
(Ⅰ)求
和
的值;
(Ⅱ)數(shù)列
的通項(xiàng)公式為
(
),求數(shù)列
的前
項(xiàng)和
;
(Ⅲ)設(shè)數(shù)列
滿足:
,
,設(shè)
,若(Ⅱ)中的
滿足:對任意不小于3的正整數(shù)n,
恒成立,試求m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)正項(xiàng)數(shù)列
都是等差數(shù)列,且公差相等,(1)求
的通項(xiàng)公式;(2)若
的前三項(xiàng),記數(shù)列
數(shù)列
的前n項(xiàng)和為![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
的前
項(xiàng)和
,數(shù)列
滿足![]()
(1)求數(shù)列
的通項(xiàng)公式
;(2)求數(shù)列
的前
項(xiàng)和
;
(3)求證:不論
取何正整數(shù),不等式
恒成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列
中,
,且
.
(Ⅰ) 求
,猜想
的表達(dá)式,并加以證明;
(Ⅱ) 設(shè)
,求證:對任意的自然數(shù)
,都有
;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
的前n項(xiàng)和
(n為正整數(shù))。
(Ⅰ)令
,求證數(shù)列
是等差數(shù)列,并求數(shù)列
的通項(xiàng)公式;
(Ⅱ)令
,
試比較
與
的大小,并予以證明。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分16分)
已知有窮數(shù)列
共有
項(xiàng)(整數(shù)
),首項(xiàng)
,設(shè)該數(shù)列的前
項(xiàng)和為
,且
其中常數(shù)
⑴求
的通項(xiàng)公式;⑵若
,數(shù)列
滿足![]()
求證:
;
⑶若⑵中數(shù)列
滿足不等式:
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分) 已知曲線
,從
上的點(diǎn)
作
軸的垂線,交
于點(diǎn)
,再從點(diǎn)
作
軸的垂線,交
于點(diǎn)
,
設(shè)![]()
.。
求數(shù)列
的通項(xiàng)公式;
記
,數(shù)列
的前
項(xiàng)和為
,試比較
與
的大小
;
記
,數(shù)列
的前
項(xiàng)和為
,試證明:
。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com