【題目】在直角坐標系
中,圓
與
軸正、負半軸分別交于點
.橢圓
以
為短軸,且離心率為
.
(1)求
的方程;
(2)過點
的直線
分別與圓
,曲線
交于點
(異于點
).直線
分別與
軸交于點
.若
,求
的方程.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合
是滿足下列性質(zhì)的函數(shù)
的全體:在定義域內(nèi)存在實數(shù)
,使得
.
(1)判斷函數(shù)
(
為常數(shù))是否屬于集合
;
(2)若
屬于集合
,求實數(shù)
的取值范圍;
(3)若
,求證:對任意實數(shù)
,都有
屬于集合
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費
(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的年宣傳費
和年銷售量
(
)數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
![]()
|
|
|
|
|
|
|
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1.469 | 108.8 |
表中
,![]()
(1)根據(jù)散點圖判斷,
與
哪一個適宜作為年銷售量y關(guān)于年宣傳費x的回歸方程類型?給出判斷即可,不必說明理由
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(3)已知這種產(chǎn)品的年利潤z與x、y的關(guān)系為
根據(jù)(2)的結(jié)果回答下列問題:
①年宣傳費
時,年銷售量及年利潤的預(yù)報值是多少?
②年宣傳費x為何值時,年利潤的預(yù)報值最大?
附:對于一組數(shù)據(jù)
,其回歸線
的斜率和截距的最小二乘估計分別為:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系xOy中,曲線C1的普通方程為
,曲線C2參數(shù)方程為
為參數(shù)),以坐標原點O為極點,以x軸正半軸為極軸,建立極坐標系,直線l的極坐標方程為
.
(1)求C1的參數(shù)方程和
的直角坐標方程;
(2)已知P是C2上參數(shù)
對應(yīng)的點,Q為C1上的點,求PQ中點M到直線
的距離取得最大值時,點Q的直角坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】男生4人和女生3人排成一排拍照留念.
(1)有多少種不同的排法(結(jié)果用數(shù)值表示)?
(2)要求兩端都不排女生,有多少種不同的排法(結(jié)果用數(shù)值表示)?
(3)求甲乙兩人相鄰的概率.(結(jié)果用最簡分數(shù)表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)
,若存在實數(shù),使得
成立,則x0稱為f(x)的“不動點”.
(1)設(shè)函數(shù)
,求
的不動點;
(2)設(shè)函數(shù)
,若對于任意的實數(shù)b,函數(shù)f(x)恒有兩相異的不動點,求實數(shù)a的取值范圍;
(3)設(shè)函數(shù)
定義在
上,證明:若
存在唯一的不動點,則
也存在唯一的不動點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
與橢圓
有一個相同的焦點,過點
且與
軸不垂直的直線
與拋物線
交于
,
兩點,
關(guān)于
軸的對稱點為
.
(1)求拋物線
的方程;
(2)試問直線
是否過定點?若是,求出該定點的坐標;若不是,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com