【題目】如圖,
是正方形,點
在以
為直徑的半圓弧上(
不與
,
重合),
為線段
的中點,現(xiàn)將正方形
沿
折起,使得平面
平面
.
![]()
(1)證明:
平面
.
(2)若
,當三棱錐
的體積最大時,求
到平面
的距離.
科目:高中數(shù)學 來源: 題型:
【題目】某地環(huán)保部門跟蹤調(diào)查一種有害昆蟲的數(shù)量.根據(jù)調(diào)查數(shù)據(jù),該昆蟲的數(shù)量
(萬只)與時間
(年)(其中
)的關(guān)系為
.為有效控制有害昆蟲數(shù)量、保護生態(tài)環(huán)境,環(huán)保部門通過實時監(jiān)控比值
(其中
為常數(shù),且
)來進行生態(tài)環(huán)境分析.
(1)當
時,求比值
取最小值時
的值;
(2)經(jīng)過調(diào)查,環(huán)保部門發(fā)現(xiàn):當比值
不超過
時不需要進行環(huán)境防護.為確保恰好3年不需要進行保護,求實數(shù)
的取值范圍.(
為自然對數(shù)的底,
)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】電子芯片是“中國智造”的靈魂,是所有整機設(shè)備的“心臟”.某國產(chǎn)電子芯片公司,通過大數(shù)據(jù)分析,得到如下規(guī)律:生產(chǎn)一種高端芯片x(
)萬片,其總成本為
,其中固定成本為800萬元,并且每生產(chǎn)1萬片的生產(chǎn)成本為200萬元(總成本=固定成本+生產(chǎn)成本),銷售收入
(單位:萬元)滿足
假定生產(chǎn)的芯片都能賣掉.
(1)將利潤
(單位:萬元)表示為產(chǎn)量x(單位:萬片)的函數(shù);
(2)當產(chǎn)量x(單位:萬片)為何值時,公司所獲利潤最大?最大利潤為多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(1)當
時,求
的單調(diào)區(qū)間.
(2)試問:是否存在實數(shù)
,使得
對
恒成立?若存在,求
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一汽車廠生產(chǎn)
,
,
三類轎車,每類轎車均有舒適型和標準型兩種型號,某月的產(chǎn)量如下表(單位:輛):按類用分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,其中有
類轎車10輛.
轎車 | 轎車 | 轎車 | |
舒適型 | 100 | 150 |
|
標準型 | 300 | 450 | 600 |
(1)求
的值;
(2)用分層抽樣的方法在
類轎車中抽取一個容量為5的樣本.將該樣本看成一個總體,從中任取2輛,求至少有1輛舒適型轎車的概率;
(3)用隨機抽樣的方法從
類舒適型轎車中抽取8輛,經(jīng)檢測它們的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2 把這8輛轎車的得分看作一個總體,從中任取一個得分數(shù)
,記這8輛轎車的得分的平均數(shù)為
,定義事件
,且函數(shù)
沒有零點
,求事件
發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】沙漏是我國古代的一種計時工具,是用兩個完全相同的圓錐頂對頂疊放在一起組成的(如圖).在一個圓錐中裝滿沙子,放在上方,沙子就從頂點處漏到另一個圓錐中,假定沙子漏下來的速度是恒定的.已知一個沙漏中沙子全部從一個圓錐中漏到另一個圓錐中需用時10分鐘.那么經(jīng)過5分鐘后,沙漏上方圓錐中的沙子的高度與下方圓錐中的沙子的高度之比是(假定沙堆的底面是水平的)( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線
的焦點為
,點
在拋物線
上,
為坐標原點,
,且
.
(1)求拋物線
的方程;
(2)圓
與拋物線
順次交于
四點,
所在的直線
過焦點
,線段
是圓
的直徑,
,求直線
的方程..
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某品牌手機廠商推出新款的旗艦機型,并在某地區(qū)跟蹤調(diào)查得到這款手機上市時間(第
周)和市場占有率(
)的幾組相關(guān)數(shù)據(jù)如下表:
|
|
|
|
|
|
|
|
|
|
|
|
(1)根據(jù)表中的數(shù)據(jù),用最小二乘法求出
關(guān)于
的線性回歸方程
;
(2)根據(jù)上述線性回歸方程,預(yù)測在第幾周,該款旗艦機型市場占有率將首次超過
(最后結(jié)果精確到整數(shù)).
參考公式:
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知公差不等于
的正項等差數(shù)列
的前
項和為
,遞增等比數(shù)列
的前
項和為
,
,
,
,
.
(1)求滿足
,
的
的最小值;
(2)求數(shù)列
的前
項和
.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com