【題目】在xOy平面上,將雙曲線的一支
及其漸近線
和直線
、
圍成的封閉圖形記為D,如圖中陰影部分,記D繞y軸旋轉(zhuǎn)一周所得的幾何體為
,過(guò)
作
的水平截面,計(jì)算截面面積,利用祖暅原理得出
體積為________
![]()
【答案】
.
【解析】分析:由已知中過(guò)(0,y)(0≤y≤4)作Ω的水平截面,計(jì)算截面面積,利用祖暅原理得出Ω的體積.
詳解:在xOy平面上,將雙曲線的一支
及其漸近線
和直線y=0,y=4圍成的封閉圖形記為D,如圖中陰影部分.
![]()
則直線y=a與漸近線
交于一點(diǎn)A(
,a)點(diǎn),與雙曲線的一支
交于B(
,a)點(diǎn),
記D繞y軸旋轉(zhuǎn)一周所得的幾何體為Ω.
過(guò)(0,y)(0≤y≤4)作Ω的水平截面,
則截面面積S=
,
利用祖暅原理得Ω的體積相當(dāng)于底面面積為9π高為4的圓柱的體積,
∴Ω的體積V=9π×4=36π,
故答案為:36π
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),討論
的單調(diào)性;
(2)設(shè)
,當(dāng)
時(shí),若對(duì)任意
,存在
使
,求實(shí)數(shù)
取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(12分) ![]()
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體
中,平面
平面
,四邊形
為正方形,四邊形
為梯形,且
,
,
.
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)在線段
上是否存在點(diǎn)
,使得
平面
?若存在,求出
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,PA⊥底面ABC,∠BAC=90°.點(diǎn)D,E,N分別為棱PA,PC,BC的中點(diǎn),M是線段AD的中點(diǎn),PA=AC=4,AB=2.![]()
(Ⅰ)求證:MN∥平面BDE;
(Ⅱ)求二面角C﹣EM﹣N的正弦值;
(Ⅲ)已知點(diǎn)H在棱PA上,且直線NH與直線BE所成角的余弦值為
,求線段AH的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)在,很多人都喜歡騎“共享單車(chē)”,但也有很多市民并不認(rèn)可.為了調(diào)查人們對(duì)這種交通方式的認(rèn)可度,某同學(xué)從交通擁堵不嚴(yán)重的A城市和交通擁堵嚴(yán)重的B城市分別隨機(jī)調(diào)查了20名市民,得到了一個(gè)市民是否認(rèn)可的樣本,具體數(shù)據(jù)如下
列聯(lián)表:
![]()
附:
,
.
![]()
根據(jù)表中的數(shù)據(jù),下列說(shuō)法中,正確的是( )
A. 沒(méi)有95% 以上的把握認(rèn)為“是否認(rèn)可與城市的擁堵情況有關(guān)”
B. 有99% 以上的把握認(rèn)為“是否認(rèn)可與城市的擁堵情況有關(guān)”
C. 可以在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“是否認(rèn)可與城市的擁堵情況有關(guān)”
D. 可以在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為“是否認(rèn)可與城市的擁堵情況有關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,已知直線
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)
為極點(diǎn),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的非負(fù)半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(Ⅰ)求直線
的普通方程和曲線
的直角坐標(biāo)方程;
(Ⅱ)若曲線
上的點(diǎn)到直線
的最大距離為6,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,底面
是菱形,對(duì)角線
,
交于點(diǎn)
.
![]()
(Ⅰ)若
,求證:
平面
;
(Ⅱ)若平面
平面
,求證:
;
(Ⅲ)在棱
上是否存在點(diǎn)
(異于點(diǎn)
),使得
平面
?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究機(jī)構(gòu)對(duì)高三學(xué)生的記憶力
和判斷力
進(jìn)行統(tǒng)計(jì)分析,得下表數(shù)據(jù):
![]()
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用相關(guān)系數(shù)
說(shuō)明
與
的線性相關(guān)程度;(結(jié)果保留小數(shù)點(diǎn)后兩位,參考數(shù)據(jù):
)
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出
關(guān)于
的線性回歸方程
;
(3)試根據(jù)求出的線性回歸方程,預(yù)測(cè)記憶力為9的同學(xué)的判斷力.
參考公式:
,
;相關(guān)系數(shù)
;
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com