【題目】已知函數
.
(1)當
時,求函數
的單調遞增區間;
(2)設
的內角
的對應邊分別為
,且
,若向量
與向量
共線,求
的值.
【答案】(1)
;(2)
.
【解析】
(1)利用三角函數的恒等變換化簡f(x)的解析式為
.令
,k∈z,求得x的范圍,結合
,可得f(x)的遞增區間.
(2)由f(C)=2,求得
,結合C的范圍求得C的值.根據向量
=(1,sinA)與向量
=(2,sinB)共線,可得
,故有
=
①,再由余弦定理得9=a2+b2﹣ab ②,由①②求得a、b的值.
(1)∵
=
=
.
令
,
解得
,即
,
∵
,∴f(x)的遞增區間為
.
(2)由
,得
.
而C∈(0,π),∴
,∴
,可得
.
∵向量向量
=(1,sinA)與向量
=(2,sinB)共線,∴
,
由正弦定理得:
=
①.
由余弦定理得:c2=a2+b2﹣2abcosC,即9=a2+b2﹣ab ②,
由①、②解得
.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin2x﹣cos2x﹣2
sinxcosx(x∈R).
(1)求f(x)的單調遞增區間;
(2)求函數f(x)在區間[
,
]上的最大值和最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體
中,過對角線
的一個平面交
于點
,交
于
.
![]()
①四邊形
一定是平行四邊形;
②四邊形
有可能是正方形;
③四邊形
在底面
內的投影一定是正方形;
④四邊形
有可能垂直于平面
.
以上結論正確的為_______________.(寫出所有正確結論的編號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】由四個不同的數字
1,2,4,
組成無重復數字的三位數.(最后的結果用數字表達)
(Ⅰ)若
,其中能被5整除的共有多少個?
(Ⅱ)若
,其中能被3整除的共有多少個?
(Ⅲ)若
,其中的偶數共有多少個?
(Ⅳ)若所有這些三位數的各位數字之和是252,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】北京聯合張家口獲得2022年第24屆冬奧會舉辦權,我國各地掀起了發展冰雪運動的熱潮,現對某高中的學生對于冰雪運動是否感興趣進行調查,該高中男生人數是女生的1.2倍,按照分層抽樣的方法,從中抽取110人,調查高中生“是否對冰雪運動感興趣”得到如下列聯表:
感興趣 | 不感興趣 | 合計 | |
男生 | 40 | ||
女生 | 30 | ||
合計 | 110 |
(1)補充完成上述
列聯表;
(2)是否有99%的把握認為是否喜愛冰雪運動與性別有關.
附:
(其中
).
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四棱錐P-ABCD的底面是邊長為2的正方形,PA⊥平面ABCD,E,F分別為線段AB,BC的中點.
![]()
(1)線段AP上一點M,滿足
,求證:EM∥平面PDF;
(2)若PB與平面ABCD所成的角為45°,求二面角A-PD-F的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com